
Greatest Common Divisor(GCD)
欧几里得算法据说是最早的算法,用于计算最大公约数,也是数论的基础算法之一。
这里给出使用欧几里得算法求最大公约数的递归和非递归的程序,同时给出穷举法求最大公约数的程序。
从计算时间上看,递推法计算速度最快。
程序中包含条件编译语句用于统计分析计算复杂度。
/* * 计算两个数的最大公约数三种算法程序 */ #include <stdio.h> //#define DEBUG #ifdef DEBUG int c1=0, c2=0, c3=0; #endif int gcd1(int, int); int gcd2(int, int); int gcd3(int, int); int main(void) { int m=42, n=140; printf("gcd1: %d %d result=%d\n", m, n, gcd1(m, n)); printf("gcd2: %d %d result=%d\n", m, n, gcd2(m, n)); printf("gcd3: %d %d result=%d\n", m, n, gcd3(m, n)); #ifdef DEBUG printf("c1=%d c2=%d c3=%d\n", c1, c2, c3); #endif return 0; } /* 递归法:欧几里得算法,计算最大公约数 */ int gcd1(int m, int n) { #ifdef DEBUG c1++; #endif return (m==0)?n:gcd1(n%m, m); } /* 迭代法(递推法):欧几里得算法,计算最大公约数 */ int gcd2(int m, int n) { while(m>0) { #ifdef DEBUG c2++; #endif int c = n % m; n = m; m = c; } return n; } /* 连续整数试探算法,计算最大公约数 */ int gcd3(int m, int n) { if(m>n) { int temp = m; m = n; n = temp; } int t = m; while(m%t || n%t) { #ifdef DEBUG c3++; #endif t--; } return t; }
关键代码(正解):
/* 迭代法(递推法):欧几里得算法,计算最大公约数 */ int gcd(int m, int n) { while(m>0) { int c = n % m; n = m; m = c; } return n; }
- 下一篇 非递归求解N皇后问题(回溯法)