海岛Blog

海是无垠的,岛在海中是独立的,有一片自己的天空

CodeForces-450B Jzzhu and Sequences【数列+矩阵快速幂】

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Jzzhu has invented a kind of sequences, they meet the following property:

You are given x and y, please calculate fn modulo 1000000007 (109 + 7).

Input

The first line contains two integers x and y (|x|, |y| ≤ 10^9). The second line contains a single integer n (1 ≤ n ≤ 2·10^9).

Output

Output a single integer representing fn modulo 1000000007 (10^9 + 7).

Examples
input
Copy
2 3
3
output
1
input
Copy
0 -1
2
output
1000000006
Note

In the first sample, f2 = f1 + f3, 3 = 2 + f3, f3 = 1.

In the second sample, f2 =  - 1;  - 1 modulo (10^9 + 7) equals (10^9 + 6).


问题链接CodeForces-450B Jzzhu and Sequences

问题简述:(略)

问题分析

  方法一:

  依据题意,fi+1=fi-fi-1。故:

  f1=x, f2=y, f3=y-x,f4=-x, f5=-y, f6=x-y, f7=x, f8=y, ......

  这个数列每6项值出现循环。

  以上分析可得到f0=f6=x-y。


  方法二:

  用矩阵快速幂实现。

程序说明

  程序中都是套路。

题记:(略)

参考链接:(略)


AC的C++语言程序(方法一)如下:

/* CodeForces-450B Jzzhu and Sequences */

#include <iostream>

using namespace std;

const int MOD = 1000000007;
const int N = 6;

int ans[N];

int main()
{
    int x, y, n;

    cin >> x >> y >> n;

    // Init ans
    ans[0] = x - y;
    ans[1] = x;
    ans[2] = y;
    ans[3] = y - x;
    ans[4] = -x;
    ans[5] = - y;

    int result = ans[n % N];
    if(result >= 0)
        cout << result % MOD << endl;
    else
        cout << (result % MOD + MOD) % MOD << endl;

    return 0;
}


AC的C++语言程序(方法二)如下:

/* CodeForces-450B Jzzhu and Sequences */

#include <iostream>
#include <string.h>

using namespace std;

typedef long long LL;

const int MOD = 1e9+7;
const int N = 2;

struct Matrix
{
    LL m[N][N];

    Matrix()
    {
        memset(m, 0, sizeof(m));
    }

    // 矩阵相乘
    Matrix operator * (const Matrix& y)
    {
        Matrix z;

        for(int i=0; i<N; i++)
            for(int j=0; j<N; j++)
                for(int k=0; k<N; k++) {
                    z.m[i][j] += m[i][k] * y.m[k][j] % MOD;
                    z.m[i][j] %= MOD;
                }

        return z;
    }
};

// 矩阵快速幂
Matrix Matrix_Powmul(Matrix x, int m)
{
    Matrix z;
    z.m[0][1] = z.m[1][0] = 0;
    z.m[0][0] = z.m[1][1] = 1;

    while(m) {
        if(m & 1)
            z = z * x;
        x = x * x;
        m >>= 1;
    }

    return z;
}

int main()
{
    int x, y, n;
    int result;

    cin >> x >> y >> n;

    if(n == 1)
        result = x;
    else if(n == 2)
        result = y;
    else {
        Matrix a;
        a.m[0][0] = 0;
        a.m[1][0] = -1;
        a.m[0][1] = a.m[1][1] =1;

        Matrix t = Matrix_Powmul(a, n - 2);

        result = (x * t.m[1][0] + y * t.m[1][1]) % MOD;
    }

    if(result >= 0)
        cout << result % MOD << endl;
    else
        cout << (result % MOD + MOD) % MOD << endl;

    return 0;
}



阅读更多
所属专栏: ACM题解
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭