暴力求解,n个骰子和为s就等于n-1个骰子和分别为s-1~s-6时次数的总和。据此写出代码如下:
int baoli(int n, int s)
{
if (n < 1)
return 0;
if (n == 1)
{
if (s < 1 || s > 6)
return 0;
else
return 1;
}
int count = 0;
count = baoli(n - 1, s - 1) + baoli(n - 1, s - 2) + baoli(n - 1, s - 3) +
baoli(n - 1, s - 4) + baoli(n - 1, s - 5) + baoli(n - 1, s - 6);
return count;
}
动态规划,空间复杂度为O(ns),时间复杂度为O(ns);
int times(int n, int s)
{
vector<vector<int>> f(n + 1, vector<int>(s + 1, 0));
for (int i = 1; i < 7; i++)
f[1][i] = 1;
for(int i = 2; i <= n; i++)
for(int j = i; j <= s; j++)
switch (j)
{
case 2 :
f[i][j] = f[i - 1][j - 1];// +f[i - 1][j - 2];
break;
case 3:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2]; // +f[i - 1][j - 3]
break;
case 4:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2] + f[i - 1][j - 3];
break;
case 5:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2] + f[i - 1][j - 3] +
f[i - 1][j - 4];
break;
case 6:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2] + f[i - 1][j - 3] +
f[i - 1][j - 4] + f[i - 1][j - 5];
break;
default:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2] + f[i - 1][j - 3] +
f[i - 1][j - 4] + f[i - 1][j - 5] + f[i - 1][j - 6];
}
return f[n][s];
}
动态规划,优化空间复杂度,只使用两个长度为s+1的数组,空间复杂度为O(s);
int times(int n, int s)
{
vector<vector<int>> f(n + 1, vector<int>(s + 1, 0));
for (int i = 1; i < 7; i++)
f[1][i] = 1;
for(int i = 2; i <= n; i++)
for(int j = i; j <= s; j++)
switch (j)
{
case 2 :
f[i][j] = f[i - 1][j - 1];// +f[i - 1][j - 2];
break;
case 3:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2]; // +f[i - 1][j - 3]
break;
case 4:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2] + f[i - 1][j - 3];
break;
case 5:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2] + f[i - 1][j - 3] +
f[i - 1][j - 4];
break;
case 6:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2] + f[i - 1][j - 3] +
f[i - 1][j - 4] + f[i - 1][j - 5];
break;
default:
f[i][j] = f[i - 1][j - 1] + f[i - 1][j - 2] + f[i - 1][j - 3] +
f[i - 1][j - 4] + f[i - 1][j - 5] + f[i - 1][j - 6];
}
return f[n][s];
}