迷宫问题
定义一个二维数组:
int maze[5][5] = {
0, 1, 0, 0, 0,
0, 1, 0, 1, 0,
0, 0, 0, 0, 0,
0, 1, 1, 1, 0,
0, 0, 0, 1, 0,
};
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
Input
一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。
Output
左上角到右下角的最短路径,格式如样例所示。
Sample Input
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0
Sample Output
(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)
BFS(广度优先搜索算法):
广度优先搜索的优点是找出的第一条路径就是最短路径,常用来搜索最短路径。可以想象从入口处灌水,通过水的漫布进行层次式的搜索,一旦达到终点,停止搜索。可借助队列和树实现。
实现步骤:
(1)从入口元素开始,判断它上下左右的邻边元素是否满足条件,如果满足条件就入队列;
(2)取队首元素并出队列。寻找其相邻未被访问的元素,将其如队列并标记元素的前驱节点为队首元素。
(3)重复步骤(2),直到队列为空(没有找到可行路径)或者找到了终点。最后从终点开始,根据节点的前驱节点找出一条最短的可行路径。
代码:
#include<iostream>
#include<vector>
#include<queue>
#include<string>
using namespace std;
struct node {
int x;
int y;
int pre; // 前驱点:树结构实现
int flag; // flag为0表示该点可以走
node(int x_ = 0, int y_ = 0, int flag_ = 1, int pre_ = -1)
{
x = x_; y = y_; flag = flag_; pre = pre_;
}
};
int f[4][2] = { -1, 0, 1, 0, 0, -1, 0, 1 }; // 定义四个方向
node maze[5][5]; // 迷宫
int head = 0; // 用于创建树
queue<node> q;
vector<node> qs;
// 满足条件的新点加入队列
void work(const node &n)
{
int nx, ny;
for (int i = 0; i < 4; i++)
{
nx = n.x + f[i][0]; ny = n.y + f[i][1]; // 点向四个方向扩展
if (nx < 0 || nx > 4 || ny < 0 || ny > 4) {
continue;
}
node &e = maze[nx][ny];
if (e.flag == 0) {
e.flag = 1;
e.pre = head;
q.push(e);
}
}
}
void print_s(node a) //实现路径输出的函数(递归)
{
if (a.pre == -1) {
printf("(%d, %d)\n", a.x, a.y);
return;
}
else {
print_s(qs[a.pre]);
printf("(%d, %d)\n", a.x, a.y);
}
}
int main()
{
int e;
for (int i = 0; i <= 4; i++)
{
for (int j = 0; j <= 4; j++)
{
cin >> e;
maze[i][j].x = i;
maze[i][j].y = j;
if (e == 0) maze[i][j].flag = 0;
else maze[i][j].flag = 1;
}
}
// BFS(广度优先搜索): 使用队列
maze[0][0].flag = 1; // 第一个点特殊,flag初始为1
q.push(maze[0][0]);
node q_fro = q.front();
while (q_fro.x != 4 || q_fro.y != 4) {
q_fro = q.front();
qs.push_back(q_fro);
work(q_fro);
head++;
q.pop();
}
print_s(qs.back());
}