ECE500/600 Vector Spaces: Metric Spaces

Java Python ECE500/600

ENGINEERING ANALYTICAL

TECHNIQUES

Vector Spaces: Metric Spaces

HW 25 0129

I.  METRIC SPACES: QUESTION

[Moon and Stirling, 2000] Let X be an arbitrary set. Show that the function defined by

is a metric.

II.  METRIC SPACES: QUESTION

[Moon and Stirling, 2000] Let (X, d) be a metric space. Show that

is a metric on X. What significant feature does this metric possess?

III.  METRIC SPACES: QUESTION

[Moon and Stirling, 2000] In defining the metric of the sequence space ℓ∞ (0, ∞) as

d∞ (x,y) = sup|x(n) - y(n)| , n

“sup” is used indai 写ECE500/600 Vector Spaces: Metric Spaces stead of “max” . To  see the necessity of this definition, define the  sequences {x(n)} and {y(n)} by

Show that d∞ (x,y) > |x(n) - y(n)| , yn ≥ 1.

IV.  METRIC SPACES: QUESTION

[Moon and Stirling, 2000] Let

(a) Draw the set B.

(b) Determine the boundary of B.

(c) Determine the interior of B.

V.  METRIC SPACES: QUESTION

[Moon and Stirling, 2000]  The  fact  that  a  sequence  is  Cauchy  depends  upon  the  metric employed. Let fn (t) be the sequence of functions

in the metric space (C[a,b], d∞), where

Show that,

Hence, conclude that in this metric space, fn  is not a Cauchy sequence         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值