SparkStreaming的窗口

本文介绍了SparkStreaming中的窗口函数,包括window、countByWindow、countByValueAndWindow和reduceByWindow等,强调了窗口长度和移动速率需为batch time整数倍,并指出部分操作需要设置checkpoint。
摘要由CSDN通过智能技术生成

窗口函数,就是在DStream流上,以一个可配置的长度为窗口,以一个可配置的速率向前移动窗口,根据窗口函数的具体内容,分别对当前窗口中的这一波数据采取某个对应的操作算子。
在这里插入图片描述

需要注意的是窗口长度,和窗口移动速率需要是batch time的整数倍。

1.window(windowLength, slideInterval)

该操作由一个DStream对象调用,传入一个窗口长度参数,一个窗口移动速率参数,然后将当前时刻当前长度窗口中的元素取出形成一个新的DStream。


import org.apache.kafka.clients.consumer.{
   ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{
   ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{
   Seconds, StreamingContext}

object sparkWindowDemo {
   
  def main(args: Array[String]): Unit = {
   
    val sparkConf = new SparkConf()
      .setMaster("local[*]").setAppName("demo")
	
	//采集周期batch time,指定的2秒为每次采集的时间间隔
    val streamingContext = new StreamingContext(sparkConf,Seconds(2))

    streamingContext.checkpoint("/in/checkPoint/")

    val kafkaParams = Map(
      (ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> "192.168.184.40:9092"),
      (ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer"),
      (ConsumerConfig.GROUP_ID_CONFIG, "kafkaGroup")
    )
    
	val kafkaStream:InputDStream[ConsumerRecord[String,String]] = 
		KafkaUtils.createDirectStream(
      		streamingContext,
      		//本地策略,可用的执行器上均匀分布
      		LocationStrategies.PreferConsistent,
      		ConsumerStrategies.Subscribe(Set("sparkKafkaDemo"), kafkaParams)
    )
	
	//window窗口,可加第二个参数,参数是batch time的整数倍,滑动窗口
    //一个参数  x秒内出现几次
    //两个参数  x秒加前一窗口滑动y秒出现次数  有重复数据计算
    val numStream = kafkaStream.flatMap(_.value().toString.split("\\s+"))
      .map((_, 1)).window(Seconds(x),Seconds(y))

    numStream.print()

    streamingContext.start()

    streamingContext.awaitTermination()
  }
}

2.countByWindow(windowLength,slideInterval)

返回窗口内出现元素个数,注意:需要设置checkpoint

import org.apache.kafka.clients.consumer.{
   ConsumerConfig, ConsumerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{
   Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{
   ConsumerStrategies, KafkaUtils, LocationStrategies}

object sparkWindow2 {
   
  def main(args: Array[String]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值