剑指offer001 整数除法
- 记录剑指offer的第一道题,这道简单题对于我这种菜鸡真是太不友好了了,本以为可以开开心心的ac掉,没想到被卡了这么久。
1.题目:
给定两个整数 a 和 b ,求它们的除法的商 a/b ,要求不得使用乘号 ‘*’、除号 ‘/’ 以及求余符号 ‘%’ 。
整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2
假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231, 231−1]。本题中,如果除法结果溢出,则返回 231 − 1
2. 思路
(1) 不能使用乘号 ‘*’、除号 ‘/’ 以及求余符号 ‘%’ ,我们很简单就可以想到可以利用减法来实现,当时在在被除数很大而除数很小时就会超时,比如被除数取INT_MAX时,除数取1时。
3. 另一种解法
利用加法不断地叠加,判断被除数是否是除数的2^k倍,不断重复这个过程,就可以大大缩短时间:
while(a <= b){
int value = b;
unsigned int k = 1;
//小于0xc0000000是为了避免value溢出
while(value>=0xc0000000&&a<=value+value){
k += k;// 2^k
value += value;//求b*2^k
}
a -= value;
res += k;
}
值得注意的是,如果a = INT_MIN, 而b=-1,会造成溢出,应该返回最大值INT_MAX.
if(a == INT_MIN && b == -1) return INT_MAX;
最后代码:
int divide(int a, int b) {
if(a == INT_MIN && b == -1) return INT_MAX;
int sign = (a>0)^(b>0)?-1:1;
if(a>0) a = -a;
if(b>0) b = -b;
unsigned int res = 0;
while(a <= b){
int value = b;
unsigned int k = 1;
while(value>=0xc0000000&&a<=value+value){
k += k;
value += value;
}
a -= value;
res += k;
}
return sign == 1 ? res:-res;
}