靠右行驶规则的元胞自动机交通流建模(cellular automata,CA),2014美国数学建模竞赛(MCM)A题

本文介绍了元胞自动机(CA)在数学建模中的应用,特别是用于模拟交通流。从Wolfram的184号规则开始,逐步发展到NaSch规则和双车道模型STNS。接着,文章提出了靠右行驶模型的Keep-Right Rule,该规则通过调整CA的演化规则,实现了符合实际交通规则的仿真。最后,展示了用Matlab实现的靠右行驶规则仿真模拟图,并提供了代码分享的承诺。
摘要由CSDN通过智能技术生成

在这里我并不想说多少和美国数学建模(MCM)相关的东西,但是以2014美赛美赛A题的背景谈谈元胞自动机(Cellular automata,后面简称CA)以及其在数学建模中交通流模型中的作用和实现方法。CA的基本知识,在这里不用多说,其他地方可以搜到很多相关的简介。但是,CA之所以让人着迷,在于她的规则,元胞之间相互作用的演化规则,这些规则就是构成CA的基石,让CA可以做很多意想不到的事情,比如模拟物理现象(沙堆,气体分子运动,光的传播等等),做图像处理(边缘检测等),计算机网络建模......

在这里,我们就讨论一下元胞在交通流模型中的应用。众所周知,最简单的元胞交通流模型是wolfram提出的初等CA的第184号规则,其演化规则如下:

figure 1:wolfram的184号规则

这个规则可以让元胞模拟出交通流的感觉,为什么说是感觉呢,因为大家好像看到了一个方块或者说叫一个小车,在向前行进,但是并没有模拟出交通流中的很多现象。随后就有NaSch规则被提出来了,这个规则可以说是所有元胞交通流模型的鼻祖,后面很多规则都是从这个规则中进化而来的。而我们今天讨论的靠右行驶的双车道模型也是根据NaSch模型改进而来的,简单讨论一下NaSch模型,然后进一步引出本文要讲解的靠右行驶模型。

NaSch规则:

(1)加速

(2)减速,

(3)以概率p随机慢化速度,

(4)行进,

评论 319
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值