在这里我并不想说多少和美国数学建模(MCM)相关的东西,但是以2014美赛美赛A题的背景谈谈元胞自动机(Cellular automata,后面简称CA)以及其在数学建模中交通流模型中的作用和实现方法。CA的基本知识,在这里不用多说,其他地方可以搜到很多相关的简介。但是,CA之所以让人着迷,在于她的规则,元胞之间相互作用的演化规则,这些规则就是构成CA的基石,让CA可以做很多意想不到的事情,比如模拟物理现象(沙堆,气体分子运动,光的传播等等),做图像处理(边缘检测等),计算机网络建模......
在这里,我们就讨论一下元胞在交通流模型中的应用。众所周知,最简单的元胞交通流模型是wolfram提出的初等CA的第184号规则,其演化规则如下:
figure 1:wolfram的184号规则
这个规则可以让元胞模拟出交通流的感觉,为什么说是感觉呢,因为大家好像看到了一个方块或者说叫一个小车,在向前行进,但是并没有模拟出交通流中的很多现象。随后就有NaSch规则被提出来了,这个规则可以说是所有元胞交通流模型的鼻祖,后面很多规则都是从这个规则中进化而来的。而我们今天讨论的靠右行驶的双车道模型也是根据NaSch模型改进而来的,简单讨论一下NaSch模型,然后进一步引出本文要讲解的靠右行驶模型。
NaSch规则:
(1)加速,
(2)减速,
(3)以概率p随机慢化速度,
(4)行进,