线性表笔记
1.线性表:是由n(n≥0)个数据元素组成的有限序列。
2.线性表的基本运算有:
1)InitList(L),构造空表,即表的初始化;
2)ListLength(L),求表的结点个数,即表长;
3)GetNode(L,i),取表中第i个结点,要求1≤i≤ListLength(L);
4)LocateNode(L,x)查找L中值为x的结点并返回结点在L中的位置,有多个x则返回首个,没有则返回特殊值表示查找失败。
5)InsertList(L,x,i)在表的第i个位置插入值为x的新结点,要求1≤i≤ListLength(L)+1;
6)DeleteList(L,i)删除表的第i个位置的结点,要求1≤i≤ListLength(L);
3.顺序表:把线性表的结点按逻辑次序存放在一组地址连续的存储单元里。
4.顺序表结点的存储地址计算公式:Loc(ai)=Loc(a1)+(i-1)*C;1≤i≤n
5.顺序表上的基本运算
(1)插入
void insertlist(seqlist *L,datatype x,int i)
{
int j;
if(i<1||i>L->length+1)
error(“position error”);
if(L->length>=listsize)
error(“overflow”);
for(j=L->length-1;j>=i-1;j--)
L->data[j+1]=L->data[j]; 结点后移
L->data[i-1]=x;
L->length++;
}
在顺序表上插入要移动表的n/2结点,算法的平均时间复杂度为O(n)。
(2)删除
void delete (seqlist *L,int i)
{
int j;
if(i<1||i>L->length)
error(“position error”);
for(j=i;j<=L->length-1;j++)
L->data[j-1]=L->data[j]; 结点前移
L->length--;
}
在顺序表上删除要移动表的(n+1)/2结点,算法的平均时间复杂度为O(n)。
6.单链表:只有一个链域的链表称单链表。
在结点中存储结点值和结点的后继结点的地址,data next data是数据域,next是指针域。
(1)建立单链表。时间复杂度为O(n)。
加头结点的优点:1)链表第一个位置的操作无需特殊处理;2)将空表和非空表的处理统一。
(2)查找运算。时间复杂度为O(n)。
1) 按序号查找。
Listnode * getnode(linklist head,int i)
{
int j;
listnode *p;
p=head;j=0;
while(p->next&&j<i){
p=p->next; 指针下移
j++;
}
if(i==j)
return p;
else
return NULL;
}
2) 按值查找。
Listnode * locatenode(linklist head ,datatype key)
{
listnode *p=head->next;
while(p&&p->data!=key)
p=p->next;
return p;
}
(3)插入运算。时间复杂度为O(n)。
Void insertlist(linklist head ,datatype x, int i)
{
listnode *p;
p=getnode(head,i-1);
if(p==NULL);
error(“position error”);
s=(listnode *)malloc(sizeof(listnode));
s->data=x;
s->next=p->next;
p->next=s;
}
(4) 删除运算。时间复杂度为O(n)。
Void deletelist(linklist head ,int i)
{
listnode *p ,*r;
p=getnode(head ,i-1);
if(p==NULL||p->next==NULL)
error(“position error”);
r=p->next;
p->next=r->next;
free(r);
}
7.循环链表:是一种首尾相连的链表。特点是无需增加存储量,仅对表的链接方式修改使表的处理灵活方便。
8.空循环链表仅由一个自成循环的头结点表示。
9.很多时候表的操作是在表的首尾位置上进行,此时头指针表示的单循环链表就显的不够方便,改用尾指针rear来表示单循环链表。用头指针表示的单循环链表查找开始结点的时间是O(1),查找尾结点的时间是O(n);用尾指针表示的单循环链表查找开始结点和尾结点的时间都是O(1)。
10.在结点中增加一个指针域,prior|data|next。形成的链表中有两条不同方向的链称为双链表。
1) 双链表的前插操作。时间复杂度为O(1)。
Void dinsertbefore(dlistnode *p ,datatype x)
{
dlistnode *s=malloc(sizeof(dlistnode));
s->data=x;
s->prior=p->prior;
s->next=p;
p->prior->next=s;
p->prior=s;
}
2) 双链表的删除操作。时间复杂度为O(1)。
Void ddeletenode(dlistnode *p)
{
p->prior->next=p->next;
p->next->prior=p->prior;
free(p);
}
11.顺序表和链表的比较
1) 基于空间的考虑:顺序表的存储空间是静态分配的,链表的存储空间是动态分配的。顺序表的存储密度比链表大。因此,在线性表长度变化不大,易于事先确定时,宜采用顺序表作为存储结构。
2) 基于时间的考虑:顺序表是随机存取结构,若线性表的操作主要是查找,很少有插入、删除操作时,宜用顺序表结构。对频繁进行插入、删除操作的线性表宜采用链表。若操作主要发生在表的首尾时采用尾指针表示的单循环链表。
12.存储密度=(结点数据本身所占的存储量)/(整个结点结构所占的存储总量)
存储密度:顺序表=1,链表<1。