给定一个长度为 n 的序列 A,A 中的数各不相同。对于 A 中的每一个数
A
i
A_i
Ai,求:
m
i
n
(
1
≤
j
<
i
)
∣
A
i
−
A
j
∣
min(1≤j<i) |A_i-A_j|
min(1≤j<i)∣Ai−Aj∣
以及令上式取到最小值的 j(记为
P
i
P_i
Pi)。若最小值点不唯一,则选择使
A
j
A_j
Aj 较小的那个。
题解:可以借助set来实现,set的查找是O(log n)的,最终的时间复杂度大约为O(n log n)
#include<iostream>
#include<set>
#include<algorithm>
#define ll long long
using namespace std;
const int INF=0x3f3f3f3f;
int n;
int ans;
struct node{
int val;
int id;
bool operator<(const node&b)const{
if(val==b.val){
return id<b.id;
}
return val<b.val;
}
};
set<node> s;
set<node>::iterator it,l,r;
int main(){
scanf("%d",&n);
struct node tmp;
for(int i=1;i<=n;i++){
scanf("%d",&tmp.val);
tmp.id=i;
s.insert(tmp);
if(i>=2){
ans=INF;
it=s.find(tmp);
l=it;r=it;r++;
if(l==s.begin()){
ans=min((r->val)-tmp.val,ans);
cout<<ans<<" "<<r->id<<endl;
}
else if(r==s.end()){
l--;
ans=min(tmp.val-(l->val),ans);
cout<<ans<<" "<<l->id<<endl;
}
else {
l--;
if(((r->val)-tmp.val)<(tmp.val-(l->val))){
cout<<((r->val)-tmp.val)<<" "<<r->id<<endl;
}
else {
cout<<(tmp.val-(l->val))<<" "<<l->id<<endl;
}
}
}
}
return 0;
}