前缀和
前缀和S[i]=A[1]+A[2]+……+A[i];
可以用A[i]=S[i]-S[i-1]来还原;
还有二维的前缀和S[i][j] = S[i-1][j] + S[i][j-1] - S[i-1][j-1] + A[i][j];
这个公式可以用容斥原理推得。
差分
对于一个给定的数列A,它的差分数列B定义为:
B[1]=A[1],B[i]=A[i]-A[i-1] (2<=i<=n);
前缀和与差分是一对逆运算。差分操作有助于把原序列上的“区间操作”转化为差分序列上的“单点操作”,在树上有着独特的应用。
例题:IncDec Sequence(CH0304)
给定一个长度为 n(n≤10^5 ) 的数列 {a_1,a_2,…,a_n},每次可以选择一个区间 [l,r],使下标在这个区间内的数都加一或者都减一。
求至少需要多少次操作才能使数列中的所有数都一样,并求出在保证最少次数的前提下,最终得到的数列可能有多少种。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5+10;
ll n;
ll a[maxn];
ll b[maxn];
int main(){
cin>>n;
ll p=0,q=0;
for(int i=1;i<=n;i++){
cin>>a[i];
if(i==1) b[i]=a[i];
else {
b[i]=a[i]-a[i-1];
if(b[i]>0){
p+=b[i];
}
else if(b[i]<0){
q-=b[i];
}
}
}
cout<<max(p,q)<<endl;
cout<<abs(p-q)+1<<endl;
return 0;
}