读卡器应用函数整理 2.输出金额到dat文件

本文详细介绍了如何使用C语言将金额数据写入.dat文件,包括打开文件、写入数据和关闭文件的操作。

 #define DEST_FILE_NAME "dest_file.dat"

 

 

//输出金额到.dat文件
  int dest_file;
  dest_file=open(DEST_FILE_NAME,O_WRONLY|O_CREAT,S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH);
  if(dest_file<0)
  {
  printf("open the dest file error\n");
  exit(1);
  }
  if((write(dest_file,a,i)&&write(dest_file,tmp,sizeof(tmp)))<0)
  {
  printf("write the dest file error\n");
  exit(1);
  }
  close(dest_file); 

 

   
//输出金额到.dat文件

unsigned long int b[1];

b[0]=count;

 


  int dest_file;
  dest_file=open(DEST_FILE_NAME,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH);
  if(dest_file<0)
  {
  printf("open the dest file error\n");
  exit(1);
  }
  if((write(dest_file,b,4))<0)
  {
  printf("write the dest file error\n");
  exit(1);
  }
  close(dest_file);

内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力与LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参数自动寻优,提升模型性能与泛化能力。项目涵盖数据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码与目录结构设计,支持端到端自动化建模与跨平台应用。; 适合人群:具备一定机器学习和深度学习基础,熟悉Python编程与PyTorch框架,从事数据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化与实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握Transformer与LSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参数优化中的实际应用;④实现从数据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例与GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制和训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同数据集和优化算法,提升对复杂时序预测任务的综合把控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值