Coursera ML笔记 -----week3 Logistic Regression

欢迎点击作者原文地址

Logistic Regression /Classification

logistic regression和linear regression 并没有什么直接的联系,不要搞混淆了

  1. 问题是什么 ?
    希望能够做一个分类,预期结果y是离散型 y =0 or 1

  2. 我们怎么去做 ?
    用之前学过的线性回归去做,不行,因为线性回归的 hθ(x) 的取值范围并不局限在[0,1]之间,所以需要用Sigmoi function/Logistic function去做

  3. 什么是Sigmoi function/Logistic function?

    hθ(x)=g(θTx)

    where g(x)=11+ez

  4. 本质是什么
    hθ(x) 实际是输入X时y=1的预期概率 hθ(x)=P(y=1|x;θ)

  5. decision boundary?
    hθ(x) 里面的 θ 确定下来的时候,就会有一个看不见的decision boundry出现。和样本数据无关,不管有没有样本数据,decision boundry始终都在,它只是你的hypothesis的一个性质,只要你的参数 θ 确定下来

  6. 出现的原因?
    我们有一个threshold 0.5 当z>0.5时,g(z) >=0.5
    所以 if θTx > 0 predict “y=1”

  7. cost function
    我们希望cost function 最好能够是convex的,这样子能够保证我们在使用梯度下降法的时候能够收敛到全局最小点

    J(θ)=1mi=1mCost(hθ(x(i)),yi)

    其中
    Cost(hθ(x),y)={log(hθ(x))log(1hθ(x))ifify=1y=0

当然,上式可以写成

Cost(hθ(x),y)=ylog(hθ(x))(1y)log(1hθ(x))

于是
J(θ)=1mi=1mCost(hθ(x(i)),yi)=1mi=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]

8. Gradient Descent
repeat
{
θj:=θjαJ(θ)θj=θjαi=1m(hθ(x(i))y(i))x(i)j

j=0,1,2,3,4,...,n
}
9. 多分类问题
多分类问题其实可以看成多个二分类问题的求解
h(i)θ(x)=P(y=i|x;θ)

其中,i是类别的数目
xmaxi  h(i)θ(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值