Codeforces Round #135 (Div. 2)VD. Choosing Capital for Treeland

D. Choosing Capital for Treeland
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The country Treeland consists of n cities, some pairs of them are connected with unidirectional roads. Overall there are n - 1 roads in the country. We know that if we don't take the direction of the roads into consideration, we can get from any city to any other one.

The council of the elders has recently decided to choose the capital of Treeland. Of course it should be a city of this country. The council is supposed to meet in the capital and regularly move from the capital to other cities (at this stage nobody is thinking about getting back to the capital from these cities). For that reason if city a is chosen a capital, then all roads must be oriented so that if we move along them, we can get from city a to any other city. For that some roads may have to be inversed.

Help the elders to choose the capital so that they have to inverse the minimum number of roads in the country.

Input

The first input line contains integer n (2 ≤ n ≤ 2·105) — the number of cities in Treeland. Next n - 1 lines contain the descriptions of the roads, one road per line. A road is described by a pair of integers si, ti (1 ≤ si, ti ≤ nsi ≠ ti) — the numbers of cities, connected by that road. The i-th road is oriented from city si to city ti. You can consider cities in Treeland indexed from 1 to n.

Output

In the first line print the minimum number of roads to be inversed if the capital is chosen optimally. In the second line print all possible ways to choose the capital — a sequence of indexes of cities in the increasing order.

Sample test(s)
input
3
2 1
2 3
output
0
2 
input
4
1 4
2 4
3 4
output
2
1 2 3 


题意:给你一那个点,n-1条变的单项路,让你找出一个点能到达其他所有点 所需要反向道路的最小条数并输出起点。

解题思路: 首先找一个点最为起点,算出以他为起点所需要反向道路的条数,再用此起点更新其他点(i能连到j,dp[j]=dp[i]+1,否则dp[j]=dp[i]-1)

代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 200005
int ans;
int dp[N];
struct node
{
    int st,en,c,next;
}e[2*N];
int p[N],num;
void init()
{
    memset(p,-1,sizeof(p));
    num=0;
}
void add(int st,int en,int c)
{
    e[num].st=st;
    e[num].en=en;
    e[num].c=c;
    e[num].next=p[st];
    p[st]=num++;
}
void dfs1(int root,int fa)
{
    for(int i=p[root];i+1;i=e[i].next)
    {
        int son=e[i].en;
        if(fa==son)continue;
        dfs1(son,root);
        if(e[i].c==0)
        {
            ans+=1;
        }
        else
            ans=ans+0;
    }
}
void dfs2(int root,int fa)
{
    for(int i=p[root];i+1;i=e[i].next)
    {
        int son=e[i].en;
        if(son==fa)continue;
        if(e[i].c==0)
            dp[son]=dp[root]-1;
        else
            dp[son]=dp[root]+1;
        dfs2(son,root);
    }
}
int main()
{
    int n,a,b;
    while(scanf("%d",&n)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        init();
        for(int i=1;i<n;i++)
        {
            scanf("%d%d",&a,&b);
            add(a,b,1);
            add(b,a,0);
        }

        ans=0;
        dfs1(1,-1);
        dp[1]=ans;
        dfs2(1,-1);
       int ans1=99999999;
       for(int i=1;i<=n;i++)
       {
           if(ans1>dp[i])
            ans1=dp[i];
       }
       printf("%d\n",ans1);
       for(int i=1;i<=n;i++)
       {
           if(dp[i]==ans1)
           printf("%d ",i);
       }
       printf("\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值