机器学习与深度学习
ObsessionLife
这个作者很懒,什么都没留下…
展开
-
[机器学习与深度学习] - No.6 ImageNet数据集预处理方式
使用Keras imagenet 图片识别模型,精度和官方精度存在差异原创 2020-04-03 17:52:13 · 2434 阅读 · 2 评论 -
[机器学习与深度学习] - No.1 基于Negative Sampling SKip-Gram Word2vec模型学习总结
基于Negative Sampling SKip-Gram Word2vec模型学习总结1. Word2vec简介Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种模型,它被大量地用在自然语言处理(NLP)中。那么它是如何帮助我们做自然语言处理呢?Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息。Word2vec的结果是为了获得Word Embedd...原创 2018-03-17 20:27:53 · 3753 阅读 · 0 评论 -
[机器学习与深度学习] - No.2 遗传算法原理及简单实现
遗传算法(Genetic Algorithm),顾名思义,就是模拟物种进化的过程,遵循“物竞天择,适者生存”的原则,随机化搜索的算法。遗传算法模拟种群演化过程,经历“选择”,“基因交叉”,“变异”等过程。遗传算法不保证一定能得到解,如果有解也不保证找到的是最优解,但若干代以后,理想状态下,染色体的适应度可能达到近似最优的状态。遗传算法的最大优点就是,我们不需要知道怎么去解决一个问题,获得最优解...原创 2018-04-11 16:08:32 · 3103 阅读 · 0 评论 -
[机器学习与深度学习] - No.3 机器学习中的性能度量指标
机器学习中的性能度量指标对机器学习、深度学习中的学习器的泛化性能进行评估,不仅仅需要有效可行的实验方法,还需要有衡量模型泛化能力的评价标准。这就是性能度量指标。在回归任务中,我们使用均方误差来衡量性能;在分类任务中,我们使用错误率、精度、查全率、查准率、F1度量、P-R曲线、ROC-AUC等指标来衡量模型。本文重点记录了分类任务的度量指标。我们假设在预测任务中:给定样例集合D=(x1,x1),...原创 2019-01-24 11:39:10 · 721 阅读 · 0 评论 -
[机器学习与深度学习] - No.4 Normalization和Standardization的区别
Normalization和Standardization的区别写在前面:Normalization和Standardization在很多时候,很多文章中并不区分,甚至会使用scaling来代替上述两个词。在这里我们针对两种方法,做一些细微的区分。Normalization:将我们的数据值的范围限定在[0,1]之间,也就是我们将常说的归一化。在机器学习的算法中,我们经常会遇到这种情况:...原创 2019-05-09 16:43:55 · 715 阅读 · 0 评论 -
[机器学习与深度学习] - No.5 ILSVRC2012_img_val数据集的使用
ILSVRC2012_img_val数据集的使用在之前使用Imagenet 2012的Validation数据集的时候,遇到了数据集图片和下载的标签文件不对应的问题,困扰了一段时间,后来终于解决了,在这里记录一下。ILSVRC2012_img_val数据的正确姿势:下载数据集和正确的label:下载数据集:数据集地址:http://www.image-net.org/challeng...原创 2019-06-09 16:32:30 · 8331 阅读 · 7 评论