Codeforces Round #750 (Div. 2) E. Pchelyonok and Segments

题目链接:https://codeforces.com/contest/1582/problem/E

k的最大值不超过500,所以有O(nk)是可以接收的复杂度。

令dp[i][j]为后缀i序列中,长度为j的序列和的最大值。

pre[i + j - 1] - pre[i - 1] < dp[i + j][j - 1],在满足这个条件的前提下,从dp[i+1][j]向dp[i][j]转移,则能保证,dp[i][j]的值是不覆盖dp[i + j][j - 1]的,所以可以满足序列长度依次为j, j - 1, … , 1的最优情况。

#include <bits/stdc++.h>
using namespace std;

using ll = long long;

const int INF = 0x3f3f3f3f;
const int N = 1e5 + 5; 
const int K = 450;

int t, n;
ll a[N], pre[N], dp[N][K];

int main(void) {
//	freopen("in.txt", "r", stdin);
	scanf("%d", &t);
	while (t--) {
		scanf("%d", &n);
		for (int i = 1; i <= n; i++) {
			scanf("%lld", &a[i]);
			pre[i] = pre[i - 1] + a[i];
		}
		int k = 0;
		while (k * (k + 1) / 2 <= n) k++;
		for (int j = 0; j < k; j++) dp[n + 1][j] = -INF;
		dp[n + 1][0] = INF;
		for (int i = n; i >= 1; i--) {
			for (int j = 0; j < k; j++) {
				dp[i][j] = dp[i + 1][j];
				if (j && i + j - 1 <= n && pre[i + j - 1] - pre[i - 1] < dp[i + j][j - 1]) {
					dp[i][j] = max(dp[i][j], pre[i + j - 1] - pre[i - 1]);
				}
			}
		}
		int ans = 0;
		for (int j = 0; j < k; j++)
			if (dp[1][j] > 0) ans = j;
		printf("%d\n", ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JILIN.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值