大模型的基本评价方法

大模型的基本评价方法

大模型的性能评价还是比较复杂的,这方面的知识我们随便找一个大模型客户端问问,就能获取到一堆标准化说明,我们不得不承认,大模型的回答非常专业和标准,但是我们普通用户或软件开发者在不进行深入研究的情况下,又有多少人能理解这些指标与我们准备用大模型要做的事的直接关系呢?又能了解到这些指标哪些是我们不能妥协的,哪些指标在某些阶段可以放宽技术要求呢,因此,将这些专业技术指标与我们所做的工作内容、时段、结果进行一个概念上的对齐就变的尤为重要,这其中涉及了项目方案设计与规划、聚焦能力实现、目标结果实现等各个阶段是否可以成功达成,同时还牵扯重要的成本问题,所以本章准备根据自己前期进行的大模型应用项目开发过程中,总结的一些相关理解和经验整理一份文档以做记录,同时与大家分享和探讨。

大模型的性能指标

既然是讨论大模型性能指标相关的评价方法,那我们怎么也要说一些专业点的东西是吧,下面随便找个大模型网页客户端问一句就能得到相关说明,如下:

评估大模型的性能是一个多维度的复杂过程,涉及准确性、效率、鲁棒性、可解释性等多个方面。以下是当前主流的大模型性能评价方法及相关指标:

  • 准确性(Accuracy)
    定义:衡量模型预测与真实数据的匹配程度,通常以百分比表示(0%~100%)。
    适用场景:分类任务(如图像分类、文本分类)。
    局限性:在类别不平衡的数据中可能失真,需结合其他指标(如精确率、召回率。
  • 效率(Efficiency)
    推理时间:模型处理单个请求所需时间,影响用户体验。
    首 Token 时延(First Token Latency):用户发出请求到第一个 Token 返回的时间。
    整句时延(Total Output Latency):完整回答生成的时间。
    计算资源消耗:内存占用、FLOPs(每秒浮点运算次数)、GPU利用率等。
  • 鲁棒性(Robustness)
    抗噪声能力:模型在输入含噪声(如拼写错误、模糊图像)时的表现。
    稳定性:在不同随机种子、输入顺序下的表现一致性。
  • 可解释性(Interpretability)
    衡量模型决策过程的可理解性,如:
    可视化分析(如注意力机制的可视化)。
    逻辑推理可追溯性(如 ChatGPT 的逐步推理展示)。
  • 泛化能力(Generalization)
    衡量模型在未见数据上的表现,通常通过跨数据集测试或迁移学习评估。
  • 多样性(Diversity)
    适用于生成式模型(如 GPT、文生图模型),衡量输出是否丰富、不重复。
    常用指标:N-gram 多样性、人工评估等。

这些指标和我们有什么关系

上面引用的这些大模型指标,是不是很难第一时间从字面内容上与我们所准备做或即将做的工作具体关联起来?除非对大模型有比较深刻的认识和理解,而这恰恰是刚刚接触大模型用户所要面对的第一道门槛,下面是我的一些理解,从软件研发工作本身出发,看看是不是更容易理解,在解释这些指标之前,我们先设想一个具体的、可行的大模型应用场景,我们这里用一个基于大模型的(人工智能)数据分析工具的设计和开发作为一个示例案例,数据分析工具的设计目标是,我们设计一组执行器,可以执行数据分析各个阶段的工作,例如执行sql查询、进行中间结果计算或转换、创建数据报表、生成数据图表等,以上几个步骤基本上是面向关系型数据库类的应用系统中经常出现和需要的数据分析工作拆分,这些工作在应用系统交付后基本上会长期存在需求,在没用使用人工智能时,这些工作一般划归为系统运维服务持续进行,长期成本很高并且效率低,我们设想将数据分析各步骤拆分为可以由大模型理解并调用的执行器(agents),由大模型根据我们输入的自然语言说明对特定数据分析并形成需要的结果,要完成这些工作,我们需要准备执行器,并编写一个文档来说明各执行器的作用和关系,以及相关执行的规范等,将这些内容可以通过大模型api的system 信息发送给大模型,理想状态下大模型可以理解说明内容并按照规范执行我们所需的数据分析动作并生成指定结果,下面基于这个案例进行理解:

  • 准确性
    在这个案例中,准确性体现在大模型是否可以理解执行器执行说明内容,并且可以根据说明中的规范按照数据分析人员的分析思路和方法执行动作,这里涉及动作执行成功率、数据分析准确率等指标,在实际测试过程中,将规范文档发给大模型,并要求遵照执行一个数据分析动作,查看大模型根据要求返回的执行编排情况,可以直观看出这个大模型的准确性(很多大模型这一关都过不了,当然也涉及大模型的训练参数量问题),我们给一个好理解的定义,执行编排合理、结果合理、成功率高这个大模型的准确性就非常高。
  • 效率
    在数据分析工具的场景中,“效率"可以理解为大模型两方面的表现,第一是反应速度,即从用户输入"帮我分析上季度销售趋势"到生成第一个SQL查询,大模型需要多长时间响应?第二是非常重要的经济性,分析一个复杂业务问题时,大模型是否会无意义地调用多个执行器(比如反复查询相同数据)?大模型应该经验丰富的数据分析师能快速抓住问题核心一样,用最少的执行器调用完成分析(如1次数据查询+1次图表生成),避免"自我重复”(比如不会先调Python计算器再调SQL计算器做相同运算),在System提示文档较长时仍能快速理解规则等,在对不同大模型进行测试,我们可以根据相同分析任务下,不同模型调用执行器的次数和总耗时来判定其效率(当然效率和算力有关,如果独立部署大模型服务会涉及成本问题)。
  • 鲁棒性
    鲁棒性对大模型来讲就是容错能力,想象一下用户输入了不规范的指令:“把那个销售数据…你懂的!做成炫酷的图”。容错能力好的大模型应该具有良好的抗模糊能力,能通过上下文理解"那个数据"指的是最近上传的销售报表,同时具有很好的抗干扰能力,忽略"炫酷"这种主观描述,选择最合适的图表类型,具备容错能力,当执行器返回错误(比如SQL语法报错)时,能自动调整重试(当然这项可能需要执行器的配合),以上就像优秀的数据分析师即使面对模糊需求,也能通过经验补充完整信息。当我们在对大模型进行测试时可故意输入一些含错别字的指令、不完整的分析要求、矛盾的执行条件等信息,观察模型是否能通过提问澄清或合理推测完成任务来判定被测试的大模型的容错能力。
  • 可解释性
    大模型根据分析需求返回的执行过程应是可解释的(可检查的),例如当大模型决定"先按地区分组统计,再生成柱状图"时,我们需要知道它为什么这么做。好的可解释性表现为包括决策透明,能说明"根据您提到的’比较区域差异’,建议使用分组统计",执行过程可见,每个执行器调用前会告知"接下来将执行什么,错误问题提示,如果失败会明确提示"图表生成失败:缺少时间维度字段"等,可解释性可类比人类分析师,不会突然扔出结果,而是会解释:“我注意到数据有季节性特征,所以…”。在对可解释性进行测试时应关注模型是否主动说明推理过程、错误提示是否有助于快速定位问题等内容。
  • 泛化能力
    泛化能力在一定程度上说明了大模型在遵循既有规定完成超范围工作的能力,例如工具原本只处理销售数据,但突然需要分析仓库温度记录。泛化能力强的模型能够理解新的领域,即使没见过温度数据,也能识别"摄氏度""波动范围"等概念,同时具有迁移方法,把销售分析中的"同比计算"方法自动应用到温度分析,新增规范适配能力,当新增"温度数据必须保留2位小数"的规范时,能快速适应,就像跨部门轮岗的分析师,面对新业务也能快速上手,对这方面的测试可以通过突然更换数据领域(如从财务切换到物流)、增加全新的执行器类型、修改系统提示文档中的关键规则等方式进行。
  • 多样性
    对于这个数据分析案例,多样性的具体体现是当用户要求"展示销售数据"时,模型应该能提供多种合法方案,其中包括结果多样性,既能建议折线图看趋势,也能提供数据透视表看明细,方法多样性,既支持用SQL直接聚合,也能用Python或其它语言的执行器后期处理,风格多样性,不局限于特定风格,可生成严谨的汇报版分析,也能产出简洁的速查版,其结果表现类似资深分析师会根据听众身份(高管/业务员)调整汇报方式,多样性可通过对同一需求是否总能提供3种以上合理方案、是否过度依赖某种固定模式(比如永远先查SQL再作图)等方式进行测试。

总结,业务价值与技术落地的平衡之道

大模型的性能指标并非抽象的技术概念,而是直接决定业务目标能否实现的关键因素。在数据分析工具的场景中,准确性是业务可靠性的基石——若模型无法正确理解执行规则,再强大的算力也只会产生错误结果;效率直接影响用户体验和成本结构,一个需要反复调用执行器的大模型,其API成本可能吞噬项目利润;鲁棒性决定了工具的普适性,就像优秀员工既能处理严谨报表也能应对模糊需求;可解释性是信任桥梁,当模型能像人类分析师一样说明决策逻辑时,业务人员才敢采纳其结论;泛化能力延长了工具的生命周期,使其能适应业务扩展;多样性则体现了服务的专业深度,如同资深顾问能提供多视角解决方案。

技术选型的平衡点在于:初期可适当放宽效率要求(如允许稍长响应时间),但必须死守准确性底线;在垂直领域可降低多样性权重,但需强化鲁棒性以适应业务语言的灵活性;当工具需跨部门使用时,泛化能力和可解释性就应优先考虑。本质上,这些指标是将"技术能力"翻译为"业务价值"的密码——理解它们,就能用技术语言回答"这个模型能否帮我们达成目标"这个终极问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tllhc01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值