【ATC】Blocked Roads 删边最短路

这篇博客探讨了一种有向图的最短路问题,在给定的边数和点数下,每次删除一条边时如何计算从1到n的最短路径。文章通过分情况讨论和BFS算法来解决这个问题,时间复杂度为O(n*(n+m))。在删除边后,重新计算最短路径并输出结果。
摘要由CSDN通过智能技术生成

传送⻔

题意

给出点数为 n n n,边数为 m m m的有向图,问每次删去一条边时, 1 − n 1 - n 1n的最短路,每次询问相互独立。 n < = 400 n < = 400 n<=400

分析

分情况讨论,我们先求出这个图内的最短路,并且路径还原就可以知道哪些边在最短路中,这些边在图中最多不超过 n − 1 n - 1 n1
如果当前枚举的边不是最短路中的边,那么直接输出答案,如果是,那么考虑把这条边删去然后跑最短路
时间复杂度为 O ( n ∗ ( n + m ) ) O(n * (n + m)) O(n(n+m))

代码

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl;
#define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 500,M = N * N;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1);
template<typename T>inline void read(T &a) {
    char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
    while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x;
}
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;}
int h[N],e[M],ne[M],idx;
PII edge[M];
bool st[N];
bool is[M];
int d[N];
int per[M];
int n,m;

void add(int x,int y){
    ne[idx] = h[x],e[idx] = y,h[x] = idx++;
}

void bfs(){
    queue<int> q;
    memset(d,0x3f,sizeof d);
    d[1] = 0;
    q.push(1);
    while(q.size()){
        int t = q.front();
        q.pop();
        if(t == n) return;
        for(int i = h[t];~i;i = ne[i]){
            int j = e[i];
            if(d[j] > d[t] + 1){
                d[j] = d[t] + 1;
                per[j] = i;
                q.push(j);
            }
        }
    }
}

void bfs(int x){
    queue<int> q;
    memset(d,0x3f,sizeof d);
    d[1] = 0;
    q.push(1);
    while(q.size()){
        int t = q.front();
        q.pop();
        for(int i = h[t];~i;i = ne[i]){
            int j = e[i];
            if(t == edge[x].fi && j == edge[x].se) continue;
            if(d[j] > d[t] + 1){
                d[j] = d[t] + 1;
                q.push(j);
            }
        }
    }
}

int main() {    
    read(n),read(m);
    memset(h,-1,sizeof h);
    for(int i = 1;i <= m;i++){
        int x,y;
        read(x),read(y);
        add(x,y);
        edge[i] = {x,y};
    }   
    bfs();
    if(d[n] == INF){
        for(int i = 1;i <= m;i++) di(-1);
        return 0;
    }
    int s = n;
    int ans = d[n];
    while(s != 1){
        is[per[s]] = 1;
        s = edge[per[s]].fi;
    }
    for(int i = 1;i <= m;i++){
        if(is[i]){
            bfs(i);
            if(d[n] == INF) d[n] = -1;
            di(d[n]);
        }
        else {
            di(ans);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值