神经网络与深度学习(三)——反向传播算法

本文介绍了神经网络中反向传播算法的原理和步骤,包括基于矩阵计算网络输出、代价函数的假设、反向传播的四个基本方程以及算法流程。通过反向传播,可以高效计算代价函数关于权重的偏导数,进而进行权重更新。
摘要由CSDN通过智能技术生成

1. 基于矩阵计算网络输出

首先给出网络中权重的清晰定义。使用这里写图片描述表示从这里写图片描述层的这里写图片描述个神经元到层的这里写图片描述个神经元的链接上的权重。如下图所示,给出了第2个隐藏层的第4个神经元到第3个隐藏层的第2个神经元的链接上的权重。


这里写图片描述

对网络偏差和激活值也使用类似的表示。显式地,使用 这里写图片描述表示在 个神经元的偏差,使用 这里写图片描述表示 这里写图片描述个神经元的激活值。如下图所示。

这里写图片描述

这样一来, 这里写图片描述层的 这里写图片描述个神经元的激活值 就与 这里写图片描述层的激活值关联起来了,如下式所示。

这里写图片描述

我们引入向量化函数来按照矩阵形式重写上述公式,由于我们对权值矩阵 这里写图片描述索引下标做出了定义,于是上式就转化为下面这种整洁的形式,避免了对权值矩阵做转置运算。

这里写图片描述

利用上述方程计算 这里写图片描述时,我们称中间量 这里写图片描述层的带权输入。则 这里写图片描述的每个元素是 ,即
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值