来源:ScienceAI
本文为论文介绍,建议阅读5分钟
将人工智能融入医疗保健不仅是一种进化,而且是一场革命,有望显著提高患者护理、运营效率和医学研究。
在短短时间内,人工智能在医疗保健领域的应用已经充分展示了其巨大的潜力和可行性。大语言模型(LLM)可以提供肿瘤诊断,提供睡眠和健身建议,扫描医疗图像、分析核磁共振成像、X 射线和组织样本。
然而,尽管如此,在输出准确性、透明度、整合、数据隐私、道德、偏见和监管合规等方面,存在着重大担忧。
「将人工智能融入医疗保健不仅是一种进化,而且是一场革命,有望显著提高患者护理、运营效率和医学研究。」密歇根大学弗林特分校创新与技术学院网络安全临床教授 Timothy Bates 表示。
但是,他强调说:「实现这一潜力需要应对重大挑战。」
AI 贯穿整个医疗工作流程
首先,人工智能可以接管耗时、重复的任务,比如,在总结约会方面,人工智能已经被证明比人类做得更好。AI 还可以简化日程安排、计费和患者管理等行政流程。此外,人工智能驱动的预测分析可以帮助资源分配。
「尽管对生成 AI 有合理的担忧,但五年后,医疗保健提供者会想知道没有它的情况,尤其是对于转录临床笔记和决策支持等事情,」药物管理公司 Drfirst 首席医疗官 Colin Banas 博士说。
Banas 说,除此之外,AI 可以改善诊断,因为它可以快速,准确地分析大量数据。例如,与传统方法相比,AI 算法可以分析医学图像,以检测诸如癌症,心脏病或神经系统疾病等疾病。
AIdoc 就是一个例子,它通过以高精度检测医学成像中的异常,来帮助改变放射学。
SEO Company Rank Secure 的首席执行官 Baruch Labunski 说:「 AI 的算法比医生现在能做的要早得多,可以检测到癌症的成像,从而提供更早、侵入性更小的治疗,提高患者的存活率。」
Banas 指出,AI 还可以通过分析遗传学、生活方式、药物、病情和过去治疗过程等数据来支持更多个性化的医学。而且,Model 可以远程监控可穿戴设备,以实时跟踪生命体征和健康指标。「这对于管理慢性疾病和在服务不足的地区提供护理特别有益。」
同样,预测分析可以帮助预测患者的恶化,败血症和其他关键疾病,从而及时进行干预。Banas 指出,例如,医院正在使用 AI 来预测患者再入院风险,并因此量身定制后收费护理计划。
Hitachi Vantara 全球数字创新营销和战略高级总监 Bjorn Andersson 说,从基础设施的角度来看,预测分析还可以优化复杂的医院环境的运营。模型可以分析来自传感器的实时输入,甚至可以在天气预报周围的外部数据中分析,从而帮助机构在即将到来的热浪或其他与天气相关的事件中预先部署资源。
Andersson 说:「随着天气事件等事情变得更加不可预测和严重,物理和网络的这种结合变得越来越重要。」
支持药物发现,临床试验
专家指出,AI 在研究实验室中也具有巨大的潜力,尤其是围绕药物发现和开发。
例如,美国国立卫生研究院(NIH)国家癌症研究所的研究人员建立了一种机器学习(ML)模型,该模型对免疫检查点抑制剂(治疗癌症的药物)产生了更准确的预测。另一个例子是 Google DeepMind,它在蛋白质折叠预测方面取得了突破,帮助发现药物发现。
Labunski 说:「在医疗保健中使用 AI 的最佳方面之一是分析拟议的药物治疗,副作用以及它们如何相互作用。」
同时,在临床试验中,AI Gen 可以通过将问卷的数据与试验要求进行比较,从而增加了合格参与者的数量,患者招聘平台临床试验媒体首席执行官 Cara Brant 说。
她说:「这有助于减少成本和时间,这两者都影响了可能改变生命的药物进入市场的速度。」
关注数据隐私,集成,透明度
另一方面,围绕 AI 在医疗保健设置中使用的两个最关键的问题是数据隐私和安全性。
Bates 指出了医疗保健数据的「高度敏感」性质,该数据将需要使用 AI 的使用「强大的数据保护措施」。他说:「确保患者机密性并确保数据免受违规是至关重要的。」
监管合规性是另一个大型合规性,医疗机构必须在数据可访问性与严格的隐私法规(例如 HIPAA)之间取得平衡。Bates 说:「确保遵守现有法规,同时适应新法规对于医疗保健提供者和技术开发人员来说,这可能是一项艰巨的任务。」
此外,医疗机构可能会难以将 AI 与现有的遗留系统集成在一起,这可能导致互操作性问题。反过来,这需要对升级和员工培训进行投资。Bates 指出,当涉及员工(也是患者)时,人们可能会对人工智能的可靠性和有效性持怀疑态度。
Labunski 说:「 AI 并没有分享其如何得出的结论,并且在该过程中缺乏透明性可能会在治疗中造成问题,甚至提供护理。」
Enterprise Search Company Aisera 的联合创始人兼首席执行官 Muddu Sudhakar 同意「模型可以是复杂的黑匣子,几乎没有透明度」。另外,「 AI并不完美。它会犯错。」
因此,Bates 指出,通过透明的过程,严格的测试和证明切实的利益来建立信任将是非常重要的。
确保人类互相帮助
随着行业越来越多地采用 AI 和自动化,人们对人们的互动会有所转移。
她说:「医疗保健是深刻的个人和亲密的,这是 AI 最大的局限性之一。」
患者想与他们信任的提供者合作,普通人可能无法完全了解其诊断或治疗计划的含义。他们必须与另一个人携手合作,以了解所有不同的细微差别。她说:「医疗保健行业在使用 AI 优化流程和仅保留对人类的某些护理领域之间的挑战方面受到挑战。」
The Relayer Group 的执行董事 HP Newquist 也认为,至少在这一点上,人工智能是一个可以让人们对扫描和测试结果「获得第二意见」的提供商。人工智能可以分析每个病人的「数据仓库」,并将其与最新的医学论文和最先进的实践进行比较。然后,数据可以快速汇总,并连同建议一起提交给医生。
Newquist 说:「这里的关键词是 [推荐] ——人工智能甚至还没有达到在没有人类监督的情况下做出决定的地步。」
他指出,没有一个医生可以跟上所选领域的新信息的流动。然而,LLM 如果每天都有来自同行评议期刊的报告,就可以迅速推荐有关特定疾病、手术和患者护理的最新观点。
Banas 同意:「对于更多的临床任务,增强情报是医疗保健的最佳选择。」
参考内容:https://venturebeat.com/ai/gen-ais-impact-on-healthcare-cutting-edge-applications-and-their-challenges/
编辑:文婧
关于我们
数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。
新浪微博:@数据派THU
微信视频号:数据派THU
今日头条:数据派THU