二维码

/*

2014-12-22 create

*/

国外对二维码技术的研究始于20世纪80年代末,在二维码符号表示技术研究方面已研制出多种码制,常见的有PDF417、QR Code、Code 49、Code 16K、Code One等

中国物品编码中心对几种常用的二维码PDF417、QRCCode、Data Matrix、Maxi Code、Code 49、Code 16K、Code One的技术规范进行了翻译和跟踪研究

二维码的国家标准:二维码网格矩阵码(SJ/T 11349-2006)和二维码紧密矩阵码(SJ/T 11350-2006),从而大大促进了我国具有自主知识产权技术的二维码的研发。

信息获取(名片、地图、WIFI密码、资料)
●网站跳转(跳转到微博、手机网站、网站)
●广告推送(用户扫码,直接浏览商家推送的视频、音频广告)
●手机电商(用户扫码、手机直接购物下单)
●防伪溯源(用户扫码、即可查看生产地;同时后台可以获取最终消费地)
●优惠促销(用户扫码,下载电子优惠券,抽奖)
●会员管理(用户手机上获取电子会员信息、VIP服务)
●手机支付(扫描商品二维码,通过银行或第三方支付提供的手机端通道完成支付)

二维条码/二维码可以分为堆叠式/行排式二维条码和矩阵式二维条码。

存储
编辑

二维码可以存储各种信息,主要包括:

《二维码存储的信息》的图片说明
网址、名片、文本信息、特定代码。
根据信息的应用方式,又可以分为:
1、线上应用
如网址和特定代码,更多的是线上应用。
2、离线应用
如文本信息和名片,更多的是线下应用。

识读设备
编辑

A.二维条码的阅读设备依阅读原理的不同可分为:
(1) 线性CCD和线性图像式阅读器(Linear Imager)
(2)带光栅的激光阅读器
(3) 图像式阅读器(Image Reader)
采用面阵CCD摄像方式将条码图像摄取后进行分析和解码,可阅读一维条码和所有类型的二维条码。

一般简单表层的应用可将信息内容直接生成QR二维码使用。若作为有商业价值的应用,
想包含更多资讯内容和延伸扩展服务 开发QR二维码深层应用

QR二维码表层应用多见于:发票、车票,简单的资讯型应用。
优点:普通解码软件解码
缺点:信息不能修改编辑、仅限简单内容、不能交互信息、无加密

QR二维码深层应用多见于:验证、防伪、追溯、签到、军事、更多能交互信息的商业应用服务上。
优点:使用专业解码软件、加密机制不被破解、丰富资讯内容、系统管理、可编辑修改、与用户交互信息、更多扩展功能、具商业价值的应用
缺点:手机应用国内标准未统一,需根据手机系统开发、下载


QR码与PDF417比较: 


QR码比PDF417识别速度快,可达到30个/秒,而PDF417为3个/秒;
QR码可以实现360°全方向旋转识读,PDF417需要在+/-10°的范围内才能被识读;
QR码表示汉字的效率比PDF417码高20%,QR码使用13bit表示一个汉字,而PDF417使用16bits表示一个汉字;
QR码数据容量大,信息密度大,最多可表示多达3KB的内容,PDF417最多确只能表示1KB的内容;
QR码是正方形,PDF417是长方形,同样数据容量、有限的面积的情况下QR码可以表示更多的内容;
QR码对识读设备要求较低,PDF417当容量比较大时长度也会随之增加,所以就要求识读设备可以读取较长的空间;
支持QR码开发的工具控件非常多,使用起来非常方便;
QR码又被称为手机二维码,所以QR码不但支持了传统PC设备上的Windows、Linux等系统,还支持了手机平台的主要系统,例如:Windows Mobile、Symbian OS、等,而PDF417尚未见过类似的应用。

QR码的应用:

  利用30万像素以上的照相手机,搭配手机内的QR码解码软件,对着QR码一照,解码软件会自动解读此信息,显示于手机屏幕上面。目前也有运用到Webcam的镜头来解码,预计未来所有有镜头的科技产品,都会被导入此QR码的机制。


此外,QRDOOR、QuickMark提供PC版的QR码解码软件,让没有照相手机的用户也能直接通过PC版QR码解码软件直接截取屏幕上的QR码,以得到相关信息,让一般手机和PC用户也能体验QR码带来的方便性。

矩阵式

码制

二维码
1.行排式二维条码和矩阵式二维条码。
2.QR码解码软件  //目前主流使用的方式,QR码又被称为手机二维码
3.开源C库libdecodeqr-0.9.3.tar.bz2  + 适合在Windows下使用,但需要安装OpenCV,识别率有些低
识别率没法看了,基本没用,虽然二维码是日本开始的,这个算法也是日本来的。opencv也不能移植到dsp上,还是zbar比这个好多了
在Android上比较著名的解码库是ZXing,
介绍iPhone上的一个解码库ZBar,两个库比较了一下,ZXing对于解码比较短的条码,
二维码有优势,但如果条码很长的话,还是ZBar比较好,我特意拿快递单上的条码进行扫描,ZXing识别不了
sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg62-dev libtiff4-dev cmake libswscale-dev libjasper-dev
http://www.linuxidc.com/Linux/2012-09/70158.htm


http://www.baidu.com/link?url=aluY9AYWhK06LmXCu8RBO2CXwGiD5pdDRCmqZH_AvzJPZlH9_uzy65R9urVcFOSr
Psytec QR Code(编码解码软件)V1.0 汉化版软件下载 - 绿色先锋
http://www.greenxf.com/soft/35930.html


QR码扫描和解码工具


二维码及其识别技术
http://www.cnblogs.com/heiyue/p/3571841.html

OpenCV(Open Source Computer Vision Library)是一款开源的计算机视觉库,专门为图像和视频处理任务设计,广泛应用于学术研究、工业应用以及个人项目中。以下是关于OpenCV的详细介绍: 历史与发展 起源:OpenCV于1999年由英特尔公司发起,旨在促进计算机视觉技术的普及和商业化应用。该项目旨在创建一个易于使用、高效且跨平台的库,为开发者提供实现计算机视觉算法所需的基础工具。 社区与支持:随着时间的推移,OpenCV吸引了全球众多开发者和研究人员的参与,形成了活跃的社区。目前,OpenCV由非盈利组织OpenCV.org维护,并得到了全球开发者、研究机构以及企业的持续贡献和支持。 主要特点 跨平台:OpenCV支持多种操作系统,包括但不限于Windows、Linux、macOS、Android和iOS,确保代码能够在不同平台上无缝运行。 丰富的功能:库中包含了数千个优化过的函数,涵盖了计算机视觉领域的诸多方面,如图像处理(滤波、形态学操作、色彩空间转换等)、特征检测与描述(如SIFT、SURF、ORB等)、物体识别与检测(如Haar级联分类器、HOG、DNN等)、视频分析、相机校正、立体视觉、机器学习(SVM、KNN、决策树等)、深度学习(基于TensorFlow、PyTorch后端的模型加载与部署)等。 高效性能:OpenCV代码经过高度优化,能够利用多核CPU、GPU以及特定硬件加速(如Intel IPP、OpenCL等),实现高速图像处理和实时计算机视觉应用。 多语言支持:尽管OpenCV主要使用C++编写,但它提供了丰富的API绑定,支持包括C、Python、Java、MATLAB、JavaScript等多种编程语言,方便不同领域的开发者使用。 开源与免费:OpenCV遵循BSD开源许可证发布,用户可以免费下载、使用、修改和分发库及其源代码,无需担心版权问题。 架构与核心模块 OpenCV的架构围绕核心模块构建,这些模块提供了不同层次的功能: Core:包含基本的数据结构(如cv::Mat用于图像存储和操作)、基本的图像和矩阵操作、数学函数、文件I/O等底层功能。 ImgProc:提供图像预处理、滤波、几何变换、形态学操作、直方图计算、轮廓发现与分析等图像处理功能。 HighGui:提供图形用户界面(GUI)支持,如图像和视频的显示、用户交互(如鼠标事件处理)以及简单的窗口管理。 VideoIO:负责视频的读写操作,支持多种视频格式和捕获设备。 Objdetect:包含预训练的对象检测模型(如Haar级联分类器用于人脸检测)。 Features2D:提供特征点检测(如SIFT、ORB)与描述符计算、特征匹配与对应关系估计等功能。 Calib3d:用于相机标定、立体视觉、多视图几何等问题。 ML:包含传统机器学习算法,如支持向量机(SVM)、K近邻(KNN)、决策树等。 DNN:深度神经网络模块,支持导入和运行预训练的深度学习模型,如卷积神经网络(CNN)。 应用领域 OpenCV广泛应用于: 科研与教育:作为计算机视觉教学和研究的基础工具,OpenCV简化了算法原型开发与验证过程。 工业自动化:在视觉检测、机器人导航、产品质量控制等工业场景中,OpenCV用于实时图像分析与决策。 安防监控:用于人脸识别、行人检测、行为分析等智能监控系统。 医疗影像分析:在医疗领域,OpenCV可用于医学图像处理、病灶检测、诊断辅助等应用。 自动驾驶:在车辆视觉感知系统中,OpenCV用于道路标志识别、障碍物检测、车道线识别等任务。 多媒体应用:如图像编辑软件、AR/VR应用、游戏开发等,利用OpenCV进行图像和视频处理。 物联网与嵌入式系统:在资源受限的嵌入式设备上,OpenCV提供轻量级的计算机视觉解决方案。 学习与社区资源 OpenCV拥有丰富的官方文档、教程、示例代码以及活跃的开发者社区,包括GitHub、StackOverflow、官方论坛等,为学习和使用OpenCV提供了有力支持。此外,有许多书籍、在线课程、博客文章和研讨会专门讲解OpenCV的使用和计算机视觉技术。 综上所述,OpenCV作为一款功能强大、高效、跨平台且开源的计算机视觉库,为开发者提供了实现各类图像和视频处理任务所需的工具箱,其广泛的应用领域和活跃的社区支持使之成为计算机视觉领域不可或缺的开发工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值