题意:给定长度为n和m的两个数字序列(数均小于等于25),用m去按照一定方式去匹配n,即:如果n中的区间[a,b]各数字的名次与m中各数字的名次完全一样,那么他们就是匹配的。问题:求所有的匹配个数及他们出现的首位置。
题解:KMP的升级版,对KMP有一定了解后做这道题就比较容易了,由于区间不同后,名次就不同了,统计名次也比较麻烦,所以对于区间[a,b]中的一个数的名次,可以对应为这个数之前比它小的数的个数以及和它相等的数的个数,有了这两个,如果[a,b]区间所有的数对应这两个数的值都与序列m相应两值一样,它们就匹配了。
其实,换句话说,KMP中比较s1[i],s2[j]的值是否相等,对于这道题,就变成了比较i,j前面的比它小和等于它的个数是否相等了,其他就和KMP没什么区别了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N=100005,M=30005;
int ar[N],br[M],next[M];
int as[N][30],bs[M][30],n,m,s;
vector<int> ans;
void init()
{
ans.clear();
memset(as,0,sizeof(as));
memset(bs,0,sizeof(bs));
as[1][ar[1]]=bs[1][br[1]]=1;
for(int i=2;i<=n;i++)
{
memcpy(as[i],as[i-1],sizeof(as[0]));
as[i][ar[i]]++;
}
for(int i=2;i<=m;i++)
{
memcpy(bs[i],bs[i-1],sizeof(bs[0]));
bs[i][br[i]]++;
}
}
void getnext()
{
memset(next,0,sizeof(next));
int i=1,j=0,k,si,sj,ei,ej;
next[1]=0;
while(i<=m)
{
si=sj=ei=ej=0;
for(k=1;k<br[i];k++)
si+=bs[i][k]-bs[i-j][k];
ei=bs[i][k]-bs[i-j][k];
for(k=1;k<br[j];k++)
sj+=bs[j][k];
ej=bs[j][k];
if(j==0||(si==sj&&ei==ej))
i++,j++,next[i]=j;
else j=next[j];
}
}
void kmp()
{
int i,j,k,si,sj,ei,ej;
for(i=j=1;i<=n;)
{
si=sj=ei=ej=0;
for(k=1;k<ar[i];k++)
si+=as[i][k]-as[i-j][k];
ei=as[i][k]-as[i-j][k];
for(k=1;k<br[j];k++)
sj+=bs[j][k];
ej=bs[j][k];
if(j==0||(si==sj&&ei==ej))
i++,j++;
else j=next[j];
if(j==m+1)
{
ans.push_back(i-m);
j=next[j];
}
}
}
int main()
{
while(scanf("%d%d%d",&n,&m,&s)!=EOF)
{
for(int i=1;i<=n;i++)scanf("%d",ar+i);
for(int i=1;i<=m;i++)scanf("%d",br+i);
init();
getnext();
kmp();
printf("%d\n",s=ans.size());
for(int i=0;i<s;i++)printf("%d\n",ans[i]);
}
return 0;
}