POJ 3167 Cow Patterns

题意:给定长度为n和m的两个数字序列(数均小于等于25),用m去按照一定方式去匹配n,即:如果n中的区间[a,b]各数字的名次与m中各数字的名次完全一样,那么他们就是匹配的。问题:求所有的匹配个数及他们出现的首位置。

题解:KMP的升级版,对KMP有一定了解后做这道题就比较容易了,由于区间不同后,名次就不同了,统计名次也比较麻烦,所以对于区间[a,b]中的一个数的名次,可以对应为这个数之前比它小的数的个数以及和它相等的数的个数,有了这两个,如果[a,b]区间所有的数对应这两个数的值都与序列m相应两值一样,它们就匹配了。

其实,换句话说,KMP中比较s1[i],s2[j]的值是否相等,对于这道题,就变成了比较i,j前面的比它小和等于它的个数是否相等了,其他就和KMP没什么区别了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N=100005,M=30005;
int ar[N],br[M],next[M];
int as[N][30],bs[M][30],n,m,s;
vector<int> ans;
void init()
{
    ans.clear();
    memset(as,0,sizeof(as));
    memset(bs,0,sizeof(bs));
    as[1][ar[1]]=bs[1][br[1]]=1;
    for(int i=2;i<=n;i++)
    {
        memcpy(as[i],as[i-1],sizeof(as[0]));
        as[i][ar[i]]++;
    }
    for(int i=2;i<=m;i++)
    {
        memcpy(bs[i],bs[i-1],sizeof(bs[0]));
        bs[i][br[i]]++;
    }
}
void getnext()
{
    memset(next,0,sizeof(next));
    int i=1,j=0,k,si,sj,ei,ej;
    next[1]=0;
    while(i<=m)
    {
        si=sj=ei=ej=0;
        for(k=1;k<br[i];k++)
            si+=bs[i][k]-bs[i-j][k];
        ei=bs[i][k]-bs[i-j][k];
        for(k=1;k<br[j];k++)
            sj+=bs[j][k];
        ej=bs[j][k];
        if(j==0||(si==sj&&ei==ej))
            i++,j++,next[i]=j;
        else j=next[j];
    }
}
void kmp()
{
    int i,j,k,si,sj,ei,ej;
    for(i=j=1;i<=n;)
    {
        si=sj=ei=ej=0;
        for(k=1;k<ar[i];k++)
            si+=as[i][k]-as[i-j][k];
        ei=as[i][k]-as[i-j][k];
        for(k=1;k<br[j];k++)
            sj+=bs[j][k];
        ej=bs[j][k];
        if(j==0||(si==sj&&ei==ej))
            i++,j++;
        else j=next[j];
        if(j==m+1)
        {
            ans.push_back(i-m);
            j=next[j];
        }
    }
}
int main()
{
    while(scanf("%d%d%d",&n,&m,&s)!=EOF)
    {
        for(int i=1;i<=n;i++)scanf("%d",ar+i);
        for(int i=1;i<=m;i++)scanf("%d",br+i);
        init();
        getnext();
        kmp();
        printf("%d\n",s=ans.size());
        for(int i=0;i<s;i++)printf("%d\n",ans[i]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值