阅读笔记-Pre-Training Graph Neural Networks for Generic Structural Feature Extraction


摘要

(1)Denoising Link Reconstruction
(2)Centrality Score Ranking
(3)Cluster Preserving

预训练方法介绍

模型框架如下图所示:
框架

1.Denoising Link Reconstruction

作者认为一个好的特征提取器应该能够恢复链接,即使它们已经从给定的图中删除,由此提出了这项预训练任务。对于输入的图G,随即删除输入图G中的一些已经存在的边,来得到有噪声的输入图G*,接下来G* 作为GNN解码器F的输入,得到表征向量F(G*),之后将这些向量送入译码器NTN模型中,来预测节点u和v是否相连。

公式:在这里插入图片描述

译码器和解码器均采用二元交叉熵损失函数来联合优化。
公式:在这里插入图片描述

通过这种方法,经预训练的GNNs能够学习到输入数 embedding的一种鲁棒的表示,这种表示在含有噪声或者边信息部分丢失的图数据中很有效。

2.Centrality Score Ranking

节点中心度是Graph的重要指标。Centrality Score 能够根据节点位于图中的结构角色来衡量节点的重要性。通过预训练 GNN来对节点的各种Centrality Score 进行排序,GNN便能够捕获每个节点位于图中的结构角色。作者运用了四种Centrality Score

图或网络中的中心性

(1)Eigencentrality:节点的中心化测试值由周围所有连接的节点决定,即一个节点的中心化指标应该等于其相邻节点的中心化指标之线性叠加。
(2)Betweenness:如果一个成员位于其他成员的多条最短路径上,那么该成员就是核心成员,就具有较大的中介中心性;
(3)Closeness:如果节点到图中其他节点的最短距离都很小,那么它的接近中心性就很高。相比中介中心性,接近中心性更接近几何上的中心位置。
(4)Subgraph Centrality:是对节点度中心性的改进,基于节点对所在网络局部子图的参与程度来确定节点的重要性。衡量某节点对所有子图的参与度(到所有子图最近路径长度的和),他描述了节点在整个图中的’motif’角色。

详见:link1 link2 link3
这四种Centrality Score描述了节点在整个图中所承担的不同角色,因此,通过这四种Centrality Score的学习任务节点的embedding能够标注不同粒度的图结构信息。但是,由于Centrality Score在不同尺度的图之间无可比性,因此,需要利用Centrality Score的相对次序作为任务学习的标签。也就是说,对于节点对(u,v)和Centrality Score s 。他们之间的相对次序记作在这里插入图片描述
则:在这里插入图片描述
根据Burges et al., 2005所定义的成对排序方法,由以下公式估计排名的概率:在这里插入图片描述
通过下式优化每一个Centrality Score s的F_rank,D_s_rank:
在这里插入图片描述
总结:通过Centrality Score Ranking任务,预训练的GNN能够学习到图中的每一个节点在全局中起到的作用。

3.Cluster Preserving

在这里插入图片描述
思考:对于这个任务,应该可以加负采样来继续实验

总结

本文设计了Denoising Link Reconstruction,Centrality Score Ranking,Cluster Preserving三个预训练任务从局部到全局,很有借鉴意义。

参考:GNN 教程:图上的预训练任务上篇

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
混合图神经网络用于少样本学习。少样本学习是指在给定的样本数量非常有限的情况下,如何进行有效的学习和分类任务。混合图神经网络是一种结合了图神经网络和其他模型的方法,用于解决少样本学习问题。 首先,混合图神经网络将图神经网络与其他模型结合起来,以充分利用它们在不同任务上的优势。图神经网络可以有效地处理图结构数据,并捕捉节点之间的关系,而其他模型可能在处理其他类型的数据时更加优秀。通过将它们结合起来,混合图神经网络可以在少样本学习中更好地利用有限的数据。 其次,混合图神经网络可以通过在训练过程中使用一些预训练模型来提高学习效果。预训练模型是在大规模数据集上进行训练得到的模型,在特定任务上可能有较好的性能。通过将预训练模型与图神经网络结合,混合图神经网络可以在少样本学习中利用预训练模型的知识,以更好地适应有限的数据。 最后,混合图神经网络还可以通过设计适当的注意力机制来提高学习效果。注意力机制可以使网络更加关注重要的特征和关系,忽略无关的信息。在少样本学习中,选择性地关注有限的样本和特征对于提高学习的效果至关重要。混合图神经网络可以通过引入适当的注意力机制来实现这一点,以提取和利用关键信息。 综上所述,混合图神经网络是一种用于少样本学习的方法,它结合了图神经网络和其他模型的优势,并利用预训练模型和适当的注意力机制来提高学习效果。这种方法对于在有限数据条件下执行有效的学习和分类任务非常有帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值