《算法导论》实验六:红黑树插入算法(C++)——控制台树型显示

本文详细介绍了红黑树的插入算法,包括红黑树的性质、插入步骤和调整策略。通过实验展示了如何在红黑树中插入一系列数值,如41、38、31、12、19、8,分析了插入过程中的调整情况,如case1、case2和case3。最后,提供了实验总结和C++源代码。
摘要由CSDN通过智能技术生成

一、问题描述

我们知道一颗高度为h的二叉搜索树,可以支持任何一种基本动态集合操作,且其时间复杂度均为O(h)。因此,二叉搜索树的性能与树的高度密切相关,如果树的高度较高时,这些集合操作可能并不比在链表上执行得快。所以让树中的元素尽量地平衡在树的两侧,使得树的高度尽量地低,便可提高二叉搜索树的性能。而红黑树(red-black- tree)是许多“平衡的”查找树中的一种,可以保证在最坏情况下基本动态集合操作的时间复杂度为O(lgn)。
因此,为了加强对红黑树的性质及操作的了解,本实验通过编码来实现红黑树的一系列操作(主要是红黑树的插入算法)。

二、算法分析与设计

(一)红黑树的性质如下:
1、每个结点或是红的,或是黑的。
2、根结点是黑的。
3、每个叶结点(NIL)是黑的。
4、如果一个结点是红的,则它的两个儿子都是黑的。
5、对每个结点,从该结点到其子孙的所有路径上包含相同数目的黑结点。

(二)为了实现红黑树插入算法,必须对红黑树的性质有透彻的了解。因为在不断的向红黑树的插入过程中,为了满足“平衡”的优良性质,可能会破坏红黑树的5条性质的某几条,而此时就需要根据5条性质的要求对插入结点及其“附近”结点进行调整。
算法步骤(如下图-1所示):
Step1:将带插入节点z按BST树规则插入红黑树中,z是叶子节点;
Step2:将z节点涂红;
Step3:调整使其满足红黑树的性质(关键步骤)。
这里写图片描述
这里写图片描述
图-1 整个插入算法RBInsert()

(三)调整
红黑树的插入代码与二叉查找树的插入代码大致相同,区别在于最后z的左右孩子都设为哨兵元素(黑色地NIL),而且z的颜色属性设为红色。新元素插入可能会破坏红黑性质,所以我们要做额外的操作RBInsertFixUp来保持。
Z插入后违反情况:如果它是根结点,则它破坏了性质2:根必须是黑色的。如果它的父亲是红色的,则它破坏了性质4:红结点必须有两个黑色的孩子。对于性质1、3、5,它并不会破坏:它是红色的,满足性质1;它的两个孩子是黑色的T.nil,满足性质3;它是红色的,不会增加黑 高度,满足性质5。
调整步骤
A、若z为根,将其涂黑;
B、若z为非根,则p[z]存在:
①若p[z]为黑,无需调整
②若p[z]为红,违反性质4,则需调整,且分六种情况进行调整,即父结点是左孩子的三种情况加上父结点是右孩子的三种情况。但后三种情况与前三种情况对称,所以不再赘述,仅以前三种为例:case1:z的叔叔y是红色;case2,:z的叔叔y是黑色,且z是双亲的右孩子;case3:z的叔叔y是黑色,且z是双亲的左孩子。
调整算法如下图-2:
这里写图片描述
图-2 调整算法RBInsertFixUp(),case4~case6在此略去

三、实验结果与分析

本次实验中,为了能较为全面的覆盖红黑树插入时出现的调整状态,即测试用例能体现插入后不满足性质并且case1、case2和case3的情况都包含进,实验者选择了算法导论(第3版)中的题13.3-2为测试用例来进行试验。
问题13.3-2:将关键字41、38、31、12、19、8连续地插入一颗出初始为空的红黑树后,试画出该结果树?
刚开始程序运行时出现图-3画面,可自由选择实验者想要执行的操作:输入1则表示要插入结点;输入2表示展示红黑树当前状态;输入0表示退出控制台。
因为刚开始红黑树是颗空树,所以选择1进行插入41
这里写图片描述
图-3 对接下来的操作进行选择

选择1并输入要插入的数41,见下图-4:
这里写图片描述
图-4 选择1并输入要插入的数41

同理,继续插入38、31,输入操作标记2可树形显示红黑树当前状态:插入31时出现case3,调整颜色并进行一次右旋。见下图-5
这里写图片描述
图-5 插入38、31,并树形显示

同理,继续插入12、19,树形显示红黑树当前状态:插入12时出现case1,仅需调整颜色,并且递归向上调整;插入19时出现case2,先左旋,调整颜色后再右旋。见下图-6
这里写图片描述
图-6 插入12、19,并树形显示

最后,插入8,树形显示红黑树当前状态:出现case1,仅需调整颜色,并且递归向上调整。
这里写图片描述
图-7 插入8,树状显示最终结果

四、实验总结

1、 红黑树的是一个“平衡性”很好的二叉搜索树,其基本动态集合操作的时间复杂度为O(lgn),但在插入时要不断调整以满足红黑树的5条性质。
2、 红黑树插入的过程可能会违反性质2和性质4:当z是根时违反性质2;当z的父母结点是红时违反性质4,因此要做调用函数RBInsertFixUp()进行相应调整。
3、 在时间复杂度方面:调整算法的时间复杂度为O(logn);整个插入算法的时间复杂度也为O(logn);此外,调整算法中至多使用2次旋转。


五、源代码(C++)

/* 
性质1: 每个结点是红色或黑色 
性质2: 根结点点是黑色
性质3:  每个叶节点(NIL)是黑的
性质4:  如果一个结点是红的,则它的两个儿子都是黑色
性质5:  对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点
*/  

#include <iostream>
#include <deque>
#include <iomanip>
#include <sstream>
#define SENTINEL -100000     //哨兵,作为nil结点的key,方便树状输出时临界点判断
using namespace std;


enum Color{RED=0,BLACK=1};   //定义枚举类型,即红黑树结点颜色类型,0表示红色,1表示黑色

typedef struct Node          //声明红黑树结点
{
    Color color;             //红黑树结点的颜色类型,
    struct Node *parent;     //父节点
    struct Node *left;       //左孩子
    struct Node *right;      //右孩子
    int key;                 //结点键值
}Node;

typedef struct RBTree        //定义一个红黑树
{
    Node *root;              //根节点
    Node *nil;               //哨兵结点,避免讨论结点的边界情况
}RBTree;

void Display()               //选择显示
{
    cout<<"*********************************************************\n";
    cout<<"****           请选择您要的红黑树操作!!            ****\n";
    cout<<"****   1:插入结点    2:红黑树当前状态   0:退出    ****\n";
    cout<<"****                                                 ****\n";
    cout<<"*********************************************************\n";
}

//左旋,结点x原来的右子树y旋转成x的父母
void LeftRotate(RBTree * rbTree,Node *x)
{
    if(x->right!=rbTree->nil)
    {
        Node *y=x->right;
        x->right=y->left;
        if(y->left!=rbTree->nil)
        {
            y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值