Acwing 327. 玉米田(状态压缩Dp入门)

这是一篇关于Acwing 327题目的博客,介绍了一种使用状态压缩动态规划(DP)解决玉米田摆放问题的方法。博客内容包括题目链接、题意解析、思路分析以及AC代码。作者提到了关键的两点:一是通过预处理找到所有合法的摆放方式及可转移的方案;二是利用初始状态和状态压缩简化问题。
摘要由CSDN通过智能技术生成

题目链接:

玉米田

题目大意:

在这里插入图片描述

思路分析:

  • 状态表示f[i][S] 表示摆到第行时且第i行的状态为S时的方案,且S可以看成一位二进制数,0表示不放玉米,1表示放;
  • 状态转移:这是一道棋盘类状压Dp,且发现第i行的摆放方案只与第i-1行相关,所以f[i][S] 可以由f[i-1][S’] 转移;
  • 转移的条件:S,S’均为合法摆放方案,即没有相邻两个一, S&S’=0;
  • 技巧1:使用预处理求出所有合法的摆放方法, 并且求出每个合法S可以被合法转移的S‘;
    技巧2:可以将初始的不能摆放的地方标记为1,并且将第行的初始状态压缩为十进制数g[i],这样合法的S必须满足S&g[i]==0;

AC代码

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include<vector>
using namespace std;
const int N=14,M=1<<12,mod=1e8;
int f[N][M],g[N];
vector<int> h[M];
vector<int> state;
int n,m;
bool check(int x)
{
    for(int i=0;i<m;i++){
        if((x>>i&1)&&(x>>(i+1)&1))
        return false;
    }
    return true;
}
//预处理
void pre()
{
    for(int i=0;i<(1<<m);i++){
        if(check(i))
            state.push_back(i);
    }
    for(int i=0;i<state.size();i++){
        for(int j=0;j<state.size();j++){
            int a=state[i],b=state[j];
            if(a&b) continue;
            h[i].push_back(j);//方便后面的枚举
        }
    }
}
int main()
{
    cin>>n>>m;
    pre();
    for(int i=1;i<=n;i++)
    for(int j=0;j<m;j++){
        int a;
        scanf("%d",&a);
        g[i]+=((!a)<<j);//技巧2
    }
    f[0][0]=1;
    for(int i=1;i<=n+1;i++){
        for(int j=0;j<state.size();j++){
            if(g[i]&state[j]) continue;
            for(int b:h[j])
                //转移方程
                f[i][j]=(f[i][j]+f[i-1][b])%mod;
        }
    }
    cout<<f[n+1][0]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值