379.捉迷藏(最小点覆盖)

该博客探讨了如何运用Dilworth定理解决有向无环图(DAG)中的最小路径点覆盖问题。通过建立二分图并计算最大匹配数,博主展示了如何找到覆盖所有顶点的最少路径数。算法包括传递闭包的计算和二分图最大匹配的寻找,最终输出路径覆盖的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

捉迷藏

最小相交路径点覆盖

下面的不是严谨的数学证明,但是可能让你觉得这样求的算法貌似大概是对的

在这里插入图片描述

最小可重复路径点覆盖

在这里插入图片描述

Dilworth定理

在这里插入图片描述

二分图的常用技巧–建单向边即可

在这里插入图片描述

//DAG图中,最长反链长度 = 最小链覆盖(用最少的链覆盖所有顶点)
//所以我们先对有向图传递闭包(偏序关系补全),然后n^2
//有向无环图G的最小路径点覆盖包含的路径条数,等于n减去拆点二分图G2的最大匹配数。证明暂且不会,y总说学了网络流再学证明
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=210;
int n,m;
bool g[N][N];
bool st[N];
int match[N];
bool find(int x)
{
    for (int i = 1; i <= n; i ++ )
        if (g[x][i] && !st[i])
        {
            st[i] = true;
            int t = match[i];
            if (t == 0 || find(t))
            {
                match[i] = x;
                return true;
            }
        }

    return false;
}

int main()
{
    scanf("%d%d",&n,&m);
    while(m--)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        g[a][b]=1;
    }
    //floyd求传递闭包,n^3
    for(int k=1;k<=n;k++){
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                 g[i][j]|=(g[i][k]&g[k][j]);
            }
        }
    }
    //建二分图,不用真的建二分图
    int res = 0;
    for (int i = 1; i <= n; i ++ )
    {
        memset(st, 0, sizeof st);
        if (find(i)) res ++ ;
    }

    printf("%d\n", n - res);

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值