Accurate Image Super-Resolution Using Very Deep Convolutional Networks

本文介绍了一种基于VGG网络的改造方案,通过引入残差学习提高网络性能。探讨了网络训练过程及实验设计,包括不同初始化学习率下的收敛速度、不同网络深度的效果等。
使用VGG网络进行改造:
特点:20层,使用residuals + high learning rate


1、残差学习:

在这段话中,y表示的是ground-truth,x表示的interpolation low resolution ( ILR) r 应该就是所谓的残差,在这里,作者说残差学习网络训练的损失函数就应该变为:

网络的输入为三个类型:1、残差  2、ILR  3、ground truth HR  

网络的训练是用 小patch块梯度下降和后向传播(LeCun )方法。 momentum = 0.9 。

实验的设置:
1、在不同的初始化学习率下,有残差和无残差训练的收敛速度:


2、不同深度的网络在不同放大倍数下的效果

3、训练样本用不同倍数或者相同倍数下的结果

4、与SRCNN进行比较

5、最后实验的比较以及总体的比较

总结:好的论文不仅要有新的想法,还要合理的论文安排,精心的实验设计和结果。


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值