手把手掌握TensorFlow验证集使用与训练监控
一、为什么说验证集是模型训练的生命线?
做过机器学习的朋友都知道,训练时最怕遇到的情况就是"一学就会,一考就废"。这就好比学生平时作业全对,一到考试就露馅。验证集就是我们的"模拟考试",它和"期末考试"(测试集)最大的区别在于:验证集是老师(模型)在平时学习阶段就能看到的题型,而测试集是老师(模型)从来没见过的全新题目。
在实际工程中,我见过太多因为验证集使用不当导致的翻车现场。比如有个做电商推荐的项目,团队把用户行为数据按时间顺序随机切分,结果新用户的行为全在验证集里,导致线上效果比验证集差30%以上。这就是典型的验证集划分方法错误导致的灾难。
二、三种验证集划分方法详解
2.1 基础版:手动划分
from sklearn.model_selection import train_test_split
# 加载经典手写数字数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# 像素值归一化
x_train = x_train / 255.0
x_test = x_test / 255.0
# 重要技巧:先合并再拆分保证分布一致
x_full = np.concatenate([x_train, x_test])
y_full = np.concatenate([y_train, y_test])
# 按8:1:1拆分
x_train, x_temp, y_train, y_temp = train_test_split(
x_full, y_full, test_size=0.2, stratify=y_full)
x_val, x_test, y_val, y_test = train_test_split(
x_temp, y_temp, test_size=0.5, stratify=y_temp)
print(f"训练集:{
len(x_train)},验证集:{
len(x_val)},测试集:{
len(x_test)}")
关键点解析:
stratify
参数保证类别分布一致- 先合并再拆分避免数据泄露
- 最终比例调整为8:1:1
2.2 进阶版:K折交叉验证
from sklearn.model_selection import KFold
kf = KFold(n_splits=5, shuffle=True)
for fold, (train_idx, val_idx) in enumerate(kf.split(x_full)):
x_train = x_full[train_idx]
y_train = y_full[train_idx]
x_val = x_full[val_idx]
y_val = y_full[val_idx]
# 在此训练模型
model = build_model()
model.fit(x_train, y_train,
validation_data=(x_val