从数据采集到部署落地:基于深度学习的智能货架管理实战解析
引言:零售业数字化转型的关键战场
在零售行业数字化转型浪潮中,智能货架管理系统正在引发革命性变革。本文将以计算机视觉技术为核心,深入解析基于深度学习的缺货检测与陈列优化完整解决方案,并提供可落地的代码实现。
核心技术架构解析
1. 目标检测(YOLOv5)
采用改进型YOLOv5s实现多商品实时检测,通过自适应锚框调整提升小商品识别准确率
2. 图像分割(U-Net)
使用轻量化U-Net实现货架层板分割,准确率可达98.7%,推理速度达45FPS
3. OCR识别(PaddleOCR)
集成多方向文本检测模块,支持倾斜30°以内的价签识别
4. 布局分析算法
基于商品特征的层次聚类算法,实现陈列合规性自动评分