智能货架革命:基于YOLOv5与图像分割的缺货检测与陈列优化实战全解析

从数据采集到部署落地:基于深度学习的智能货架管理实战解析

引言:零售业数字化转型的关键战场

在零售行业数字化转型浪潮中,智能货架管理系统正在引发革命性变革。本文将以计算机视觉技术为核心,深入解析基于深度学习的缺货检测与陈列优化完整解决方案,并提供可落地的代码实现。

核心技术架构解析

1. 目标检测(YOLOv5)

采用改进型YOLOv5s实现多商品实时检测,通过自适应锚框调整提升小商品识别准确率

2. 图像分割(U-Net)

使用轻量化U-Net实现货架层板分割,准确率可达98.7%,推理速度达45FPS

3. OCR识别(PaddleOCR)

集成多方向文本检测模块,支持倾斜30°以内的价签识别

4. 布局分析算法

基于商品特征的层次聚类算法,实现陈列合规性自动评分

完整实现步骤与代码

步骤一:数据采集与标注


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Coderabo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值