购物单
题目
:
描述
王强今天很开心,公司发给N元的年终奖。王强决定把年终奖用于购物,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件,且每件物品只能购买一次。每个主件可以有 0 个、 1 个或 2 个附件。附件不再有从属于自己的附件。王强想买的东西很多,为了不超出预算,他把每件物品规定了一个重要度,分为 5 等:用整数 1 ~ 5 表示,第 5 等最重要。他还从因特网上查到了每件物品的价格(都是 10 元的整数倍)。他希望在不超过 N 元(可以等于 N 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第 j 件物品的价格为 v[j] ,重要度为 w[j] ,共选中了 k 件物品,编号依次为 j 1 , j 2 ,……, j k ,则所求的总和为:
v[j 1 ]*w[j 1 ]+v[j 2 ]*w[j 2 ]+ … +v[j k ]*w[j k ] 。(其中 * 为乘号)
请你帮助王强设计一个满足要求的购物单。
输入描述:
输入的第 1 行,为两个正整数,用一个空格隔开:N m
(其中 N ( <32000 )表示总钱数, m ( <60 )为希望购买物品的个数。)
从第 2 行到第 m+1 行,第 j 行给出了编号为 j-1 的物品的基本数据,每行有 3 个非负整数 v p q
(其中 v 表示该物品的价格( v<10000 ), p 表示该物品的重要度( 1 ~ 5 ), q 表示该物品是主件还是附件。如果 q=0 ,表示该物品为主件,如果 q>0 ,表示该物品为附件, q 是所属主件的编号)
输出描述:
输出文件只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值( <200000 )。
示例1
输入:
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
复制
输出:
2200
复制
示例2
输入:
50 5
20 3 5
20 3 5
10 3 0
10 2 0
10 1 0
复制
输出:
130
复制
说明:
由第1行可知总钱数N为50以及希望购买的物品个数m为5;
第2和第3行的q为5,说明它们都是编号为5的物品的附件;
第46行的q都为0,说明它们都是主件,它们的编号依次为35;
所以物品的价格与重要度乘积的总和的最大值为101+203+20*3=130
题解
在数据保存下来后,分析该问题发现是我们常见的背包问题:在总钱数有限的条件下,获取最大价值。
但是该问题中,附件的存在影响我们动态方程的求解.
在背包问题中,设dp[i][j]表示在钱数不超过j的条件下,对于前i件产品的选择所能获取的最大价值。
如果j>price[i] dp[i][j]=max(dp[i][j-price[i]]+value[i],dp[i-1][j])
否则 dp[i][j]=dp[i-1][j])
那么如何处理附件,我们知道,这里的编号都是主件,所以在每一主件之后可以增加对附件的判断
dp[i][j]=max(主件,主件+附件1,主件+附件2,主件+附件3,不买主件)
代码
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main()
{
int N,m;
cin>>N>>m;
N/=10;//减少循环的量级
vector<vector<int>> price(m+1, vector<int>(3, 0</