Pre-requisites: git, python 2.7.X, virtualenv, pip (7.1.X recommended)
-
If you're using Ubuntu, here are all the packages you'll need before you can proceed
$ sudo apt-get install python2.7 python-dev build-essential curl libatlas-base-dev gfortran $ sudo apt-get install libfreetype6-dev libpng-dev libjpeg-dev
-
Clone the repo from GitHub
$ git clone https://github.com/rouseguy/intro2deeplearning.git $ cd intro2deeplearning
-
Create python virtual environment
$ virtualenv env $ source env/bin/activate
-
Install requirements using pip
$ pip install -r requirements.txt
Use
requirements_linux.txt
instead ofrequirements.txt
if you're on linux -
When the requirements are being downloaded / installed, Fetch the datasets simultaneously
$ sh download_data.sh
-
Run check_env.py script to test the dependencies
$ python check_env.py
Output should look like this
[ OK ] scipy version 0.15.1 [ OK ] PIL version 1.1.7 [ OK ] keras [ OK ] IPython version 4.0.0 [ OK ] theano version 0.7.0 [ OK ] numpy version 1.9.2 [ OK ] pandas version 0.16.2 [ OK ] gensim version 0.10.3 [ OK ] sklearn version 0.16.1
This means you have all the dependencies installed and you're ready to start.
-
Run the notebook
$ cd notebooks $ ipython notebook
This opens your default browser which displays the list of notebooks in the current directory.
-