ACWING362. 区间(差分约束)

给定 n 个区间 [ai,bi]和 n 个整数 ci。

你需要构造一个整数集合 Z,使得∀i∈[1,n],Z 中满足ai≤x≤bi的整数 x 不少于 ci 个。

求这样的整数集合 Z 最少包含多少个数。

输入格式
第一行包含整数 n。

接下来n行,每行包含三个整数ai,bi,ci。

输出格式
输出一个整数表示结果。

数据范围
1≤n≤50000,
0≤ai,bi≤50000,
1≤ci≤bi−ai+1
输入样例:
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
输出样例:
6

思路:
定义 s k sk sk为0~k整数中选择了多少个数字。那么题意就转换为 s [ b i ] − s [ a i − 1 ] ≥ c i s[bi] - s[ai - 1]≥ci s[bi]s[ai1]ci
这是一个明显的差分约束式子求的是最长路。

但是这是一个数列,里面有一些隐性的条件。
比如对于数据 1 2 3, 4 5 3
对于 s [ 2 ] = 3 , s [ 0 ] = 0 , s [ 5 ] = 3 , s [ 3 ] = 0 s[2]=3,s[0]=0,s[5]=3,s[3]=0 s[2]=3,s[0]=0,s[5]=3,s[3]=0
这是符合差分式的,但是明显不合理: s [ 3 ] s[3] s[3]不应该小于 s [ 2 ] s[2] s[2]

隐性的不等式是: s [ i ] − s [ i − 1 ] ≥ 0 s[i] - s[i - 1] ≥ 0 s[i]s[i1]0 s [ i ] − s [ i − 1 ] ≤ 1 s[i] - s[i-1]≤1 s[i]s[i1]1(这是一个整数集合)

因为 c [ i ] ≤ b [ i ] − a [ i ] + 1 ) c[i] ≤ b[i] - a[i] + 1) c[i]b[i]a[i]+1),所以不可能出现正环(从b[i]走回到a[i] - 1要经过b[i] - a[i] + 1个-1)

再说说超级原点的问题。
本题中可以直接以-1为起点(然后再把所有点往右平移)。
因为很明显可以确定s[-1] = 0(也就是-1点与其他点的关系),且可以从-1出发松弛其他所有点。

有的差分约束系统中就必须得确定一个超级源点连接其他所有点,比如0,0连接其他所有点,边权为0,并设置d[0] = 0(如果是 d [ x ] + w ≤ d [ y ] d[x]+w≤d[y] d[x]+wd[y]的差分约束,那么求出来的其他值都是0或负数)。

设置超级源点,个人以为其实就是变相的多源最短(长)路,因为你不清楚要以哪一个点为起点,如果设置了一个点为起点,但是这个点出发不能到达其他点,那就起不到松弛全图的作用了。

比如 1 -> 2 -> 3 -> 4,你不能设置4起点哈,不然的话你怎么确定1,2,3的值。

所以超级源点就是多源点的一种表示形式。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;

const int maxn = 1e5 + 7;

int head[maxn],to[maxn],nex[maxn],val[maxn],tot;
int v[maxn],d[maxn];

void add(int x,int y,int z) {
    to[++tot] = y;
    nex[tot] = head[x];
    val[tot] = z;
    head[x] = tot;
}

void spfa() {
    queue<int>q;
    memset(d,0xcf,sizeof(d));
    q.push(0);d[0] = 0;v[0] = 1;
    while(!q.empty()) {
        int x = q.front();q.pop();
        v[x] = 0;
        for(int i = head[x];i;i = nex[i]) {
            int y = to[i],w = val[i];
            if(d[y] < d[x] + w) {
                d[y] = d[x] + w;
                if(!v[y]) {
                    v[y] = 1;
                    q.push(y);
                }
            }
        }
    }
}

int main() {
    int n,m = 0;scanf("%d",&n);
    for(int i = 1;i <= n;i++) {
        int x,y,z;scanf("%d%d%d",&x,&y,&z);
        add(x,y + 1,z);
        m = max(m,y + 1);
    }
    for(int i = 1;i <= m;i++) {
        add(i - 1,i,0);
        add(i,i - 1,-1);
    }
    spfa();
    printf("%d\n",d[m]);
}

题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值