论文参考
文章平均质量分 85
tommorrow12
这个作者很懒,什么都没留下…
展开
-
fasterRCNN系列
在介绍Faster R-CNN之前,先来介绍一些前验知识,为Faster R-CNN做铺垫。一、基于Region Proposal(候选区域)的深度学习目标检测算法Region Proposal(候选区域),就是预先找出图中目标可能出现的位置,通过利用图像中的纹理、边缘、颜色等信息,保证在选取较少窗口(几千个甚至几百个)的情况下保持较高的召回率(IoU,Intersection-over-Unio...转载 2018-05-10 20:30:49 · 473 阅读 · 0 评论 -
2018最佳GAN论文回顾
摘要:2018年关于GAN最有趣的文章。原文链接我很高兴今年参加了一个研究项目,这要求我必须熟悉大量用于计算机视觉方面的深度学习领域的资料。我对过去两、三年内取得的进展感到惊讶,这真的非常令人兴奋和鼓舞,所有不同的子领域,如图像修复、对抗性样本、超分辨率或是三维重建,都大大得益于近期的发展。然而,有一种神经网络,它受到了大量的宣传和炒作 — 生成性对抗网络(Generative ...转载 2019-04-17 22:25:59 · 722 阅读 · 0 评论 -
ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing 原文翻译
ST-GAN:用于图像合成的空间变换器生成敌对网络目录摘要1.介绍2.相关工作3.方法3.1、迭代几何校正3.2、顺序对抗训练3.3、敌对目标4.实验4.1、3D立方体4.2、室内物体4.3、眼镜5.结论论文地址摘要我们解决了向前景对象发现真实几何校正的问题,使得它在合成到背景图像时显得自然。为了实现这一目标,我们...原创 2019-04-13 21:52:08 · 4549 阅读 · 1 评论 -
STN:空间变换网络(Spatial Transformer Network)
最近在学习stn,看到一篇能够读懂的博客,转载一下供大家学习交流。本文的参考文献为:《Spatial Transformer Networks》卷积神经网络定义了一个异常强大的模型类,但在计算和参数有效的方式下仍然受限于对输入数据的空间不变性。在此引入了一个新的可学模块,空间变换网络,它显式地允许在网络中对数据进行空间变换操作。这个可微的模块可以插入到现有的卷积架构中,使神经网络能够主动地在...转载 2019-04-08 19:31:40 · 1974 阅读 · 0 评论 -
论文阅读《Spatial Transformer Network》-stn
Google DeepMindAbstract:作者说明了CNN对于输入的数据缺乏空间变换不变形(lack of spatially invariant ability to input data),因此作者引入了一个spatial transformer module,不需要额外的监督,能够以data-driven的方式学习得到输入图像的空间变换参数,赋予网络spatial invari...转载 2018-08-15 16:06:09 · 454 阅读 · 0 评论 -
到底什么是最小二乘法
原文链接:http://blog.sina.com.cn/s/blog_7445c2940102wjz8.html#commentComment最小二乘法,又是一个即熟悉又陌生的名字。对于学工科的我,简直就是听着最小二乘长大的(汗。。。)。但是,之前碰到要用最小二乘法的时候,我采取的办法都是拿来主义(抄。。。),并没有系统的了解一下什么是最小二乘法。包括最小二乘这个叫法,也从来都不理解(一直以...转载 2018-08-02 10:00:10 · 805 阅读 · 0 评论 -
Holistic Recognition of Low Quality License Plates by CNN using Track Annotated Data 翻译
通过CNN使用跟踪注释数据整体识别低质量车牌摘要本文专注于识别低分辨率和低质量的车牌图片。我们提出了一个收集现实世界(非合成)有标注的低质量车牌照片的数据集的方法。我们的车牌识别方法是基于一个从整体上处理整张图片的卷积神经网络,从而避免了车牌字符的切割。在多个数据集上的评估结果显示我们的方法明显优于其他低质量图片车牌识别的一些免费的和商业的解决方案。为了进一步研究低质量图片的车牌识别,我们...原创 2018-07-24 16:30:48 · 1868 阅读 · 0 评论 -
Faster-rcnn详解
Faster R-CNN算法是在Fast R-CNN算法的基础上,将RPN与Fast R-CNN结合到一个深度神经网络中的端到端的目标检测网络。Faster R-CNN由候选区域框网络(Region Proposal Network,简称RPN)和Fast R-CNN网络两部分组成。整体网络框架如图3-1所示。 图3-1 Faster R-CNN框架其中,RPN是全卷积神经网络,用于提取候选框;F...原创 2018-06-15 19:46:19 · 743 阅读 · 0 评论 -
Relation Networks for Object Detection重点解读
网络总体图: relation内部图: 1、分别根据两个特征计算它们各自的权重2、由两个特征的权重获得总权重3、按照第m个物体对当前物体的总权重,加权求出各个relation模块4、concat所有relation模块,与原来的特征叠加,最终输出通道数不变的新特征 Concat就是聚合各个,表示第n个relation模块的输出。后两层网络示意图: 去重网络的原文描述如下: 参考网址:http...原创 2018-06-21 09:26:44 · 1044 阅读 · 0 评论 -
目标检测
目前目标检测领域的深度学习方法主要分为两类:two stage 的目标检测算法;one stage 的目标检测算法。前者是先由算法生成一系列作为样本的候选框,再通过卷积神经网络进行样本分类;后者则不用产生候选框,直接将目标边框定位的问题转化为回归问题处理。正是由于两种方法的差异,在性能上也有不同,前者在检测准确率和定位精度上占优,后者在算法速度上占优。目标检测算法脉络1. two stage 的方...转载 2018-05-10 20:32:53 · 2143 阅读 · 0 评论 -
Learning to Compare: Relation Network for Few-Shot Learning阅读笔记
这两天在看ZSL的相关论文,读到这篇没看懂,去网上找了一下解读,觉得这篇不错,分享给大家。1. 前言相信每一位研究深度学习的朋友都明白,深度学习能够在这几年取得如此爆炸式的发展,除了算法本身的改进与创新,最关键的因素就是拥有海量的数据和强大的计算资源。那么,我们很自然的会问:没有海量数据怎么办?现实生活中有很多问题并没有那么多的数据可以采集,或者说采集数据所需的成本很高,比如稀有物种的图片...转载 2019-08-06 21:47:08 · 491 阅读 · 0 评论