Faster R-CNN算法是在Fast R-CNN算法的基础上,将RPN与Fast R-CNN结合到一个深度神经网络中的端到端的目标检测网络。Faster R-CNN由候选区域框网络(Region Proposal Network,简称RPN)和Fast R-CNN网络两部分组成。整体网络框架如图3-1所示。
图3-1 Faster R-CNN框架
其中,RPN是全卷积神经网络,用于提取候选框;Fast R-CNN用于对RPN中提取的候选区域进行检测并识别候选区域中的目标。Faster R-CNN算法大概可以分为:特征提取、生成候选区域框、分类回归三个步骤。
3.2.1 特征提取网络
基于卷积神经网络在图像特征提取中的优越性能,Faster R-CNN 算法的特征提取网络就采用卷积神经网络,这个特征提取网络是可替换的,可以根据实际要求选择适合深度的网络。Faster RCNN 原文中使用的是VGG16 网络