Faster-rcnn详解

Faster R-CNN算法结合了RPN和Fast R-CNN,形成一个端到端的深度学习目标检测模型。RPN作为全卷积网络负责生成候选区域,Fast R-CNN则对这些区域进行分类和回归,提升目标检测性能。该算法通过特征提取、候选区域生成和分类回归三个步骤实现目标检测,其中特征提取常使用预训练的VGG16网络。训练时,RPN和Fast R-CNN交替进行,共享卷积层,以提高效率和准确性。
摘要由CSDN通过智能技术生成

Faster R-CNN算法是在Fast R-CNN算法的基础上,将RPN与Fast R-CNN结合到一个深度神经网络中的端到端的目标检测网络。Faster R-CNN由候选区域框网络(Region Proposal Network,简称RPN)和Fast R-CNN网络两部分组成。整体网络框架如图3-1所示。

 

3-1 Faster R-CNN框架

其中,RPN是全卷积神经网络,用于提取候选框;Fast R-CNN用于对RPN中提取的候选区域进行检测并识别候选区域中的目标。Faster R-CNN算法大概可以分为:特征提取、生成候选区域框、分类回归三个步骤。

3.2.1 特征提取网络

基于卷积神经网络在图像特征提取中的优越性能,Faster R-CNN 算法的特征提取网络就采用卷积神经网络,这个特征提取网络是可替换的,可以根据实际要求选择适合深度的网络。Faster RCNN 原文中使用的是VGG16 网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值