HashedWheelTimer
前段时间,笔者在学习netty的过程中接触了HashedWheelTimer(时间轮),在netty它可以高效处理类似于定时发心跳或者关闭心跳超时连接的功能。它对任务到期时间的管理非常的有意思,它的原理是使用了一个环形数组,数组每个位置存放一个槽位,数组中的每一个槽位都存放即将到期的任务列表。
HashedWheelTimer中有一个行为tick,它指的是指针从当前槽位移动到相邻的下一个槽位的动作。指针会扫描所有的槽位,并执行槽位中已经到期的任务,并且将即将到期但是未到期的任务加入到后续的槽位中,以此达到让任务按时执行的目的。HashedWheelTimer有两个关键的参数,其中tickDuration代表指针从某个槽位到达相邻的下个槽位的时间间隔,而ticksPerWheel代表槽位的个数,它必须是2的幂,如果用户传入值不是2的幂次,那么HashedWheelTimer会将其转换为大于用户传入值的最小2的幂次值,目的是为了通过按位计算快速求余,是不是和HashMap的哈希桶有点像?
如果要向HashedWheelTimer中添加一个任务,任务首先会进入到优先级队列中,然后HashedWheelTimer每tick一次都从优先级队列中获取超时任务,并将任务存放到槽位中,为了让任务分布到不同的槽位中,首先会利用如下算法生成一个idx值,这个值直接对应槽位。
int stopIndex = (int) (ticks & mask);
ticks值指的是从HashedWheelTimer创建到现在总共tick的总数,而mask的值代表总槽位数减去1。举一个例子,以如下环形结构为例,这个Timer总共存在8个槽位,所以ticksPerWheel的值为8,如果tickDuration为1s,那么指针扫描所有的槽位总共需要耗时8s。如果向槽位中添加一个10秒后执行的任务,HashedWheelTimer首先需要计算出idx,假设tick的值为13,那么idx的值则为5,所以要把任务放在5所在的槽位上。
HashedWheelTimer设计中使用了优先级队列,目的是防止客户端线程添加任务的时候直接向HashedWheelTimer槽位中添加任务造成的同步阻塞HashedWheelTimer主线程的问题,而且主线程每tick一次只会从优先级队列中选取10000个任务,目的也是防止队列中任务太多,长时间取任务阻塞主线程。
如果任务量较大的时候,会有大量的任务被分配到相同的槽位,当HashedWheelTimer访问这个槽位的时候需要遍历全部的任务,比较消耗时间,我们可以增加槽位的总数。让任务尽量地负载到不同的槽位中。
使用HashedWheelTimer实现代码如下
@Override
public Order newOrder(OrderRequestDto orderRequestDto) {
Order order = new Order();
order.setOrderStatus(OrderStatusEnum.UNPAID.getCode());
order.setUsername(orderRequestDto.getUsername());
order.setNum(UUID.randomUUID().toString());
order.setCreateTime(new Date());
order.setMoney(100 * 100);
this.orderRepository.saveOrder(order);
this.hashedWheelTimer.newTimeout(new CloseOrderTask(order.getId(), orderRepository), CLOSE_TIME_IN_SECOND, TimeUnit.SECONDS);
return order;
}
TimerTask任务如下
@Override
public void run(Timeout timeout) throws Exception {
System.out.println("执行关闭订单的任务:" + id);
final Order order = this.orderRepository.findOrderById(id);
if (order != null && order.getOrderStatus() == OrderStatusEnum.UNPAID.getCode()) {
this.orderRepository.closeOrder(id);
}
}
HashedWheelTimer和Timer的异同
Timer底层使用优先级队列,即将被执行的任务放在索引为1的数组位置。每获取一个task之后,需要从剩余的任务中选出下一个最早需要被触发的任务,选任务的时间复杂度为O(logN)。而HashedWheelTimer使用了槽位的设计思想,每个槽存储一批任务,指针指向一个槽的时候,需要遍历这个槽的全部任务,执行已经到期的任务。如果槽中任务比较多,这个遍历也会非常的耗时,时间复杂度为O(N)
Timer没有对任务进行异常处理,任务执行过程中一旦发生了异常,那么整个Timer的任务执行线程就会崩溃,其它未处理的任务都不再执行。相比之下HashedWheelTimer处理了任务抛出的异常,某个任务崩溃并不会影响其它任务的执行。仅仅从异常处理角度来考虑,如果一定要从HashedWheelTimer和Timer中选其一,也应该选择HashedWheelTimer。
HashedWheelTimer和Timer更加适用于处理时效性不高,可以快速执行的小任务,比如关闭长时间没有心跳的网络连接,超时订单的关闭。HashedWheelTimer和Timer存在同样的问题在于,Timer和HashedWheelTimer都是单线程执行的,如果在同一时间点有非常多的任务同时被触发,那么Timer和HashedWheelTimer可能都会来不及处理,如果对实时性要求很高的话不应该选择Timer和HashedWheelTimer。