订单超时场景处理

HashedWheelTimer

前段时间,笔者在学习netty的过程中接触了HashedWheelTimer(时间轮),在netty它可以高效处理类似于定时发心跳或者关闭心跳超时连接的功能。它对任务到期时间的管理非常的有意思,它的原理是使用了一个环形数组,数组每个位置存放一个槽位,数组中的每一个槽位都存放即将到期的任务列表。

HashedWheelTimer中有一个行为tick,它指的是指针从当前槽位移动到相邻的下一个槽位的动作。指针会扫描所有的槽位,并执行槽位中已经到期的任务,并且将即将到期但是未到期的任务加入到后续的槽位中,以此达到让任务按时执行的目的。HashedWheelTimer有两个关键的参数,其中tickDuration代表指针从某个槽位到达相邻的下个槽位的时间间隔,而ticksPerWheel代表槽位的个数,它必须是2的幂,如果用户传入值不是2的幂次,那么HashedWheelTimer会将其转换为大于用户传入值的最小2的幂次值,目的是为了通过按位计算快速求余,是不是和HashMap的哈希桶有点像?

如果要向HashedWheelTimer中添加一个任务,任务首先会进入到优先级队列中,然后HashedWheelTimer每tick一次都从优先级队列中获取超时任务,并将任务存放到槽位中,为了让任务分布到不同的槽位中,首先会利用如下算法生成一个idx值,这个值直接对应槽位。

int stopIndex = (int) (ticks & mask);

ticks值指的是从HashedWheelTimer创建到现在总共tick的总数,而mask的值代表总槽位数减去1。举一个例子,以如下环形结构为例,这个Timer总共存在8个槽位,所以ticksPerWheel的值为8,如果tickDuration为1s,那么指针扫描所有的槽位总共需要耗时8s。如果向槽位中添加一个10秒后执行的任务,HashedWheelTimer首先需要计算出idx,假设tick的值为13,那么idx的值则为5,所以要把任务放在5所在的槽位上。

HashedWheelTimer设计中使用了优先级队列,目的是防止客户端线程添加任务的时候直接向HashedWheelTimer槽位中添加任务造成的同步阻塞HashedWheelTimer主线程的问题,而且主线程每tick一次只会从优先级队列中选取10000个任务,目的也是防止队列中任务太多,长时间取任务阻塞主线程。

如果任务量较大的时候,会有大量的任务被分配到相同的槽位,当HashedWheelTimer访问这个槽位的时候需要遍历全部的任务,比较消耗时间,我们可以增加槽位的总数。让任务尽量地负载到不同的槽位中。

使用HashedWheelTimer实现代码如下

@Override
public Order newOrder(OrderRequestDto orderRequestDto) {
    Order order = new Order();
    order.setOrderStatus(OrderStatusEnum.UNPAID.getCode());
    order.setUsername(orderRequestDto.getUsername());
    order.setNum(UUID.randomUUID().toString());
    order.setCreateTime(new Date());
    order.setMoney(100 * 100);
    this.orderRepository.saveOrder(order);
    this.hashedWheelTimer.newTimeout(new CloseOrderTask(order.getId(), orderRepository), CLOSE_TIME_IN_SECOND, TimeUnit.SECONDS);
    return order;
}

TimerTask任务如下

@Override
public void run(Timeout timeout) throws Exception {
    System.out.println("执行关闭订单的任务:" + id);
    final Order order = this.orderRepository.findOrderById(id);
    if (order != null && order.getOrderStatus() == OrderStatusEnum.UNPAID.getCode()) {
        this.orderRepository.closeOrder(id);
    }
}

 

HashedWheelTimer和Timer的异同

Timer底层使用优先级队列,即将被执行的任务放在索引为1的数组位置。每获取一个task之后,需要从剩余的任务中选出下一个最早需要被触发的任务,选任务的时间复杂度为O(logN)。而HashedWheelTimer使用了槽位的设计思想,每个槽存储一批任务,指针指向一个槽的时候,需要遍历这个槽的全部任务,执行已经到期的任务。如果槽中任务比较多,这个遍历也会非常的耗时,时间复杂度为O(N)

Timer没有对任务进行异常处理,任务执行过程中一旦发生了异常,那么整个Timer的任务执行线程就会崩溃,其它未处理的任务都不再执行。相比之下HashedWheelTimer处理了任务抛出的异常,某个任务崩溃并不会影响其它任务的执行。仅仅从异常处理角度来考虑,如果一定要从HashedWheelTimer和Timer中选其一,也应该选择HashedWheelTimer。

HashedWheelTimer和Timer更加适用于处理时效性不高,可以快速执行的小任务,比如关闭长时间没有心跳的网络连接,超时订单的关闭。HashedWheelTimer和Timer存在同样的问题在于,Timer和HashedWheelTimer都是单线程执行的,如果在同一时间点有非常多的任务同时被触发,那么Timer和HashedWheelTimer可能都会来不及处理,如果对实时性要求很高的话不应该选择Timer和HashedWheelTimer。

 

购买提醒:全程代码实战,本系列课程建议有Java开发经验2年以上的学员观看和购买。录制本套教程的初衷,通过从业10年接触过很多的技术开发人员,尤其在面试一些技术人员的时候,发现他们的技术知识更新较慢,很多人渴望接触到高并发系统和一些高级技术架构,为了帮助更多人能够提升自己和接触到这类技术架构,并满足企业的人才需求,利用业余时间我开始录制这套教程。通过录制教程有很多学员给我反馈信息,给了我很大的鼓舞,当然也有吐槽,我想说的是技术是没有边界的,脱离一线业务场景去谈技术,都是耍流氓的。如对我录制的教程内容有建议请及时交流。本套课程历经1年时间研发,案例来源于真实业务场景抽离,由从业10年企业一线架构师实录,没有基础不建议购买。购买后提供企业级多方位指导,通过本套案例可以让你学习目前主流的微服务技术架构和多种企业级高并发和海量数据、高可用、分布式、支付、多语言、前后端分离等技术的综合应用解决方案。在开始本课程前给大家科普几个概念: 高并发是指在比较短的时间内有大量的访问者访问目标系统,系统负载饱和或者过载宕机。 高并发的应用,我们应该都有用过或者见过,比如天猫、京东、拼多多、亚马逊的秒杀抢购还有12306的抢票。我们在体验应用的时候,可能并不会像到这种高并发系统背后的技术实现难度。高并发系统都存在这几种问题,高并发读、高并发写、访问高峰突发性、反馈结果的即时性。在抢购的时候,尤其是抢购火车票的时候,我们经常会疯狂的刷库存,几亿用户产生非常大的高并发读; 通过以上的科普相信大家对课程有一个基本的认知了,本套教程以应用最为广泛的电商系统为标本,给大家构建一个亿级微服务秒杀系统,让大家跟着我的步骤能学习行为背后的原理。本课程采用全新的微服务架构,运用了很多工业界企业解决方案和高级技术,带大家手把手实现一个高性能,高并发,高可用等的亿级微服务秒杀系统,本课程会包含很多高级的内容,比如微服务架构、分布式部署方案、多线程、支付、多语言、全链路性能压力测试等,让大家在实战中学习知识,在实战中不断进步。该课程是一个完整的微服务架构秒杀系统项目代码,案例具有很高的商业价值,大家可以根据自己的业务进行修改,便可以使用。本套课程可以满足世面上绝大多数企业级的业务场景,本课程全部代码可以直接部署企业,普通集群,支撑**并发;集群规模大,支撑亿级并发。本课程包含的技术: IDEA集成开发工具 SpringBoot2.0.2.RELEASE SpringCloudFinchley.RELEASE Thymeleaf(模板引擎技术) 微信支付 支付宝支付 银联支付 分布式数据库Mycat MySQL Druid RabbitMQ 分布式事务 分布式锁 事件驱动 多线程 MyBatis QuartzEhcache Redis Hystrix 单点登陆CAS Nginx Lua Restful AOP技术 性能压力测试Jemter VUE+jQuery+Ajax+NodeJS Python Go语言课程亮点: 1.与企业无缝对接、真实工业界产品 2.主流支付全覆盖(微信、支付宝、银联) 3.前后端分离(主流技术架构) 4.实现高并发请求和实现高可用架构解决方案 5.多语言(Java、Go、Python) 6.亿级微服务秒杀系统(支撑海量数据) 7.大型系统分布式部署方案 8.全链路性能压力测试  9.分布式事务解决方案 10.事件驱动设计解决方案 11.多线程技术的实战应用 12.高并发下的服务降级、限流实战 13.分布式架构师下实现分布式定时调度 14.集成MyBatis实现多数据源路由实战 15.集成Redis缓存实战 16.Eureka注册中心 17.OpenFeign声明式服务调用 18.Hystrix服务熔断降级方式 19.基于Hystrix实现接口降级实战 20.集成SpringCloud实现统一整合方案 21.全程代码实操,提供全部代码和资料 22.提供答疑和提供企业技术方案咨询购买提醒: 我本人在企业从业10年,因为热爱,所以坚持,下一个10年依然会在企业一线服务,因此对于课程中的技术点可以提供全方面的业务场景解决方案。我本人并非培训机构脱离一线业务场景的讲师,从业多年接触过大量的真实业务场景案例,后面会逐步通过教程案例分享我多年的实战经验,送给同行一句话:技术是服务于业务的,脱离一线业务场景就是耍流氓。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值