图像处理中的滤波器设计

本文详细介绍了图像处理中的滤波器设计,包括低通滤波器的种类:中值滤波器、均值滤波器和高斯滤波器。中值滤波器在保护图像边缘的同时去除噪声,均值滤波器实现图像平滑,高斯滤波器具有良好的低通滤波特性,适用于多种图像噪声情况。滤波器的选择取决于图像类型和目标结果。
摘要由CSDN通过智能技术生成

图像处理中的滤波器设计

在傅里叶变换中,低频决定图像再平滑区域中总体灰度级的显示,而高频决定图像细节部分。是低频通过而使高频衰减的滤波器称为“低通滤波器”;具有相反特性的滤波器称为“高通滤波器”。被低通滤波器的处理的图像比原始图像少一些尖锐的细节,因为高频部分已经衰减。同样,被高通滤波的图像在平滑区域中将减少一些灰度级的变化并突出过渡(如边缘)灰度级的细节部分。

 

低通滤波器

         在灰度连续变化的图象中,如果出现了与相邻象素的灰度相差很大的点,比如说一片暗区中突然出现了一个亮点,人眼能很容易觉察到。就象看老电影时,由于胶片太旧,屏幕上经常会出现一些亮斑。这种情况被认为是一种噪声。灰度突变在频域中代表了一种高频分量,低通滤波器的作用就是滤掉高频分量,从而达到减少图象噪声的目的。

什么是平滑(smoothing)?如下面两幅图所示:可以看到,左图比右图柔和一些(也模糊一些)。将原图中的每一点的灰度和它周围八个点的灰度相加,然后除以9,作为新图中对应点的灰度,就能实现下面的效果。就像和面一样,先在中间加点水,然后不断把周围的面和进来,搅拌几次,面就均匀了。这就是平滑。

原图

经过平滑处理后的图

 

滤波器(模板、核、掩模、窗口)的概念:为了方便地叙述上面所说的“将原图中的每一点的灰度和它周围八个点的灰度相加,然后除以9,作为新图中对应点的灰度”这一操作,我们采用如下的表示方法:

 

1/9 [1 1 1; 1 1 1; 1 1 ]

中间的点表示中心元素,即,用哪个元素做为处理后的元素。

 

中值滤波器

中值滤波也是一种典型的低通滤波器,它的目的是保护图象边缘的同时去除噪声。所谓中值滤波,是指把以某点(x,y)为中心的小窗口内的所有象素的灰度按从大到小的顺序排列,将中间值作为(x,y)处的灰度值(若窗口中有偶数个象素,则取两个中间值的平均)。中值滤波是如何去除噪声的呢?举个例子就很容易明白了。

原图

处理后的图

0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值