JNingWei
码龄7年
关注
提问 私信
  • 博客:3,981,394
    社区:174
    动态:12
    3,981,580
    总访问量
  • 740
    原创
  • 746,058
    排名
  • 1,473
    粉丝

个人简介:工作后比较忙,不怎么看账号和消息。回复不及时望见谅。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2017-06-17
博客简介:

JNing

查看详细资料
个人成就
  • 博客专家认证
  • 获得1,985次点赞
  • 内容获得538次评论
  • 获得4,569次收藏
  • 代码片获得3,191次分享
创作历程
  • 2篇
    2023年
  • 10篇
    2022年
  • 81篇
    2021年
  • 56篇
    2020年
  • 2篇
    2019年
  • 165篇
    2018年
  • 438篇
    2017年
成就勋章
TA的专栏
  • 论文算法
    48篇
  • 语义分割
    36篇
  • 传统机器学习
    2篇
  • 移动端
    4篇
  • 人体骨骼点
    7篇
  • 3D人脸
    3篇
  • 美妆
    1篇
  • windows
    4篇
  • ios
    1篇
  • 深度学习
    79篇
  • Idea与思考
    8篇
  • Git 使用
    17篇
  • TensorFlow 框架
    55篇
  • Python 编程
    133篇
  • OpenCV-Python
    21篇
  • 图像处理
    24篇
  • Numpy
    11篇
  • Bash
    12篇
  • Linux 使用
    86篇
  • macOS 使用
    12篇
  • PyTorch 框架
    15篇
  • Caffe 框架
    2篇
  • OpenCV-C++
    5篇
  • LeetCode-Python
    134篇
  • 硬件
    9篇
  • 其他
    37篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习神经网络tensorflow图像处理
About me
Github : JNingWei
Mail : hok2016jn@gmail.com
工作忙,私信未能及时回复还请见谅
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【深度学习】轻量级网络

【深度学习】轻量级网络
原创
发布博客 2023.01.22 ·
897 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

【深度学习】回归loss

【深度学习】回归loss
原创
发布博客 2023.01.20 ·
670 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【3D人脸】Mediapipe Vs Persona

Mediapipe Vs Persona
原创
发布博客 2022.11.02 ·
790 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【3D人脸】MediaPipe Face Mesh 调研

MediaPipe Face Mesh 调研
原创
发布博客 2022.11.02 ·
2281 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

【3D人脸】AI Mesh 数据工程调研

AI Mesh 数据工程调研
原创
发布博客 2022.11.02 ·
549 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【人体骨骼点】top-down与bottom-up

人体骨骼点top-down与bottom-up
原创
发布博客 2022.10.19 ·
782 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【人体骨骼点】关键点聚类方式

人体骨骼点聚类方式
原创
发布博客 2022.10.19 ·
518 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【人体骨骼点】发展脉络

人体骨骼点发展脉络
原创
发布博客 2022.10.19 ·
305 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【人体骨骼点】评估方式

人体骨骼点评估方式
原创
发布博客 2022.10.19 ·
513 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【人体骨骼点】gt构建

人体骨骼点gt构建
原创
发布博客 2022.10.19 ·
394 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【人体骨骼点】数据集

人体骨骼点数据集
原创
发布博客 2022.10.19 ·
1590 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

【人体骨骼点】算法综述

人体骨骼点综述
原创
发布博客 2022.10.19 ·
1630 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

手机指令集:armv7 & armv8

经验总结:手机指令集主要跟芯片相关,如果是c端,就默认是arm芯片了,也只有arm芯片才有armv7和armv8之分。如果上MNN的话,MNN的量化都是做在armv8上的现在c端大部分都是64位APP,对应的架构是armv8。寄存器个数不一样,指令集也不一样。需要针对这些不同重新设计计算的方式。armv7:一般偏低端机才有armv7,而armv7 是可以优化的。模型一般在armv7上跑得较慢,而MNN现在对armv7不能加速。但是据说抖音的都跑在armv7上,且还能加速。armv8:
原创
发布博客 2021.11.03 ·
1792 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

推理引擎:tnn & ncnn & 自研

经验总结目前开源的框架int推理做的都比较一般,有比较大的优化空间。在我们测试的case下,tnn相对来说会比ncnn好一些。不少大点的公司主要还是基于开源版本,适配自己的模型,针对性优化。其实搞优化大部分时间就是提高缓存命中率,高效利用neon寄存器。...
原创
发布博客 2021.11.03 ·
870 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【美妆】上美妆的全流程与问题定位

上美妆的流程点位 -> 绑妆(素材+配置文件) -> 渲染上妆流程:模型预测给到点位;配置文件对素材进行绑妆(不同素材对应不同的绑妆配置文件);送入同一套渲染引擎(每家都有自己的一套统一代码)进行渲染。绑妆环节的常见错误某个三角面片的点位顺序和整体相反按照统一顺序的面片叫做“正面”,反顺序的就成了“背面”。渲染环节有“背面剔除”原则,只渲染正面,背面不做渲染。因此“背面”区域会呈现皮肤的原色。跳点连接会导致有些面片重叠(互相重叠的,最终渲染效果依照最后渲染的那
原创
发布博客 2021.10.31 ·
409 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【pytorch】ncnn

onnx转ncnn完整实现:def onnx2ncnn(self): assert os.path.isfile(simplified_onnx_path) os.system('onnx2ncnn {} {} {}'.format(simplified_onnx_path, param_path, bin_path)) print('
param has been save to {}'.format(param_path)) print(' bin has
原创
发布博客 2021.09.22 ·
348 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【pytorch】tensorboardX

关于自定义runs下为什么不能正常保存tb记录(一直为空)的原因,可以尝试把 SummaryWriter 的如下参数实时打印出来:self.logdir = logdirself.purge_step = purge_stepself._max_queue = max_queueself._flush_secs = flush_secsself._filename_suffix = filename_suffixself._write_to_disk = write_to_diskself.k
原创
发布博客 2021.09.22 ·
172 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【pytorch】tnn

首先确保已经安装了tnn环境:onnx2tnn转tnn:def onnx2tnn(self): assert os.path.isfile(simplified_onnx_path) os.system('cd {}
' 'python onnx2tnn.py {} -version=v1.0 -optimize=1 -half=1 -o {} -input_shape input:1,{},{},{}' .format(C.o
原创
发布博客 2021.09.22 ·
1132 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【pytorch】dropout

在pytorch中,nn.Dropout(xx) 中的参数表示要丢弃的比例,和tensorflow的定义是反过来的。
原创
发布博客 2021.09.22 ·
215 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【pytorch】onnx

pytorch任意形式的model(.t7、.pth等等)转.onnx全都可以采用固定格式:model_dir = './'pth_path = model_dir + 'A.pth'onnx_path = model_dir + 'A.onnx'batch_size = 1input_shape = (3, 112, 112)cfg = Config()cfg.load_from_file(args.model_cfg_file)model = PFLD_SE3_eval(cfg.mo
原创
发布博客 2021.09.22 ·
464 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多