当前搜索:

深度学习: CVPR会议

CVPR CVPR: International Conference on Computer Vision and Pattern Recognition。 每年一届,6月份开会。 Paper Searching 进入 CVPR 2018 官网 -> Progr...
阅读(4) 评论(0)

深度学习: CV顶会 & CV顶刊

CV三大会议 CVPR: International Conference on Computer Vision and Pattern Recognition (每年,6月开会) ICCV: International Conference on Computer Vision (奇数年,1...
阅读(0) 评论(0)

深度学习: 卷积核 为什么都是 奇数size

卷积核一般都把size设为奇数,主要有以下两个原因: 保证了锚点刚好在中间,方便以模块中心为标准进行滑动卷积。 保证了padding时,图像的两边依然相对称。 [1] 为什么CNN中的卷积核size一般都是奇数...
阅读(11) 评论(0)

深度学习: global pooling (全局池化)

今天看SPPNet论文时,看到“global pooling”一词,不是很明白是啥概念。上网查了一下定义,在StackOverflow 上找到了答案: 具体回答如下: 说白了,“global pooling”就是pooling的 滑窗size 和整张feature map的size一...
阅读(8) 评论(0)

论文阅读: SPPNet

Introduction SPPNet提出于Fast R-CNN之前,既是Fast R-CNN的精神导师,也可能是YOLOv1的精神导师。 R-CNN中,通过在原图先抠取出很多的像素块,再分别单独进行特征抽取的方式来一个个生成proposal,很低效: SPPNet则改成了直接先对整张图...
阅读(10) 评论(0)

论文阅读: DenseNet

Introduction DenseNet获得 CVPR 2017 Best Paper: 将原本ResNet的 “串行式一对一的identity mapping” 变成了 “一对多的identity mapping”: 不同型号DenseNet的网络结构说明书: Resu...
阅读(12) 评论(0)

论文阅读: ResNeXt

Introduction ResNeXt是ResNet的加强版,将ResNet原本简单的“plain版残差结构”替换成了“Inception版残差结构”: 每个“Inception版残差结构”内部各通道通过不同权重进行相加: 标准计算公式如下: 作者还给出了不同型号的“Ince...
阅读(10) 评论(0)

论文阅读: ResNet

Introduction ResNet论文是里程碑级的backbone network,因此获得了 CVPR 2016 Best Paper: 文章受Highway Networks启发,通过在在不相邻的feature map间添加“跨越式”的identity mapping通道,设计出了...
阅读(7) 评论(0)

python: 读取.xlsx文件

Template XLSX_FIlE = "../../XX.xlsx" NUM_SHEETS = 3 # 获取.xlsx文件的所有sheet列表 workbook = load_workbook(XLSX_FIlE) sheets = workbook...
阅读(16) 评论(0)

macOS: 安装卷宗失败

首先根据这篇文章去安装好 希捷(for mac)驱动程序:Paragon 。 之后重启mac。 如果插上希捷移动硬盘后,mac右上角还是显示“安装卷宗失败”,则进入系统偏好设置 -> 安全性与隐私: 将这个位置关于禁用Paragon的选项去掉: 之后重新插入希...
阅读(17) 评论(0)

macOS: 没有移动硬盘的 写权限

Problem Note: 这里以希捷(seagate)硬盘为例。其他牌子移动硬盘写权限的问题可以举一反三。 原本我的mac笔记本是无法往移动硬盘里面写数据的。即右键找不到“粘贴”选项,通过指令cp会显示没有写权限。即使chmod也不行: 经过陈大佬的指点,我登陆希捷官网: 必须...
阅读(43) 评论(0)

深度学习: Detection系算法 时间轴

Year Month Algorithm Improve Conference 2014 10 R-CNN 将CNN用于Detection = = = = = 2015 4 SPPNet 共享特征抽取...
阅读(6) 评论(0)

eager evaluation (及早求值) & lazy evaluation (惰性求值)

eager evaluation (及早求值) 及早求值,也被称为贪婪求值(greedy evaluation)或严格求值,是多数传统编程语言的求值策略。 在热情求值中,表达式在它被约束到变量的时候就立即求值。这在简单编程语言中作为低层策略是更有效率的,因为不需要建造和管理表示未求值的表达式的...
阅读(6) 评论(0)

深度学习: 从YOLOv1到YOLOv3

Introduction 从YOLOv1到YOLOv3,YOLO系独树一帜,自成一派,是检测算法领域的一股清流。 YOLOv1 论文地址:You Only Look Once: Unified, Real-Time Object Detection 是one-stage系检测算法的鼻祖...
阅读(27) 评论(0)

深度学习: one-stage & two-stage 目标检测算法

Introduction detector主要分为以下两大门派: - one stage系 two stage系 代表性算法 YOLOv1、SSD、YOLOv2、YOLOv3、RetinaNet R-CNN、SPPNet、Fast R-CNN、Faster ...
阅读(13) 评论(0)

论文阅读: Focal Loss

Introduction 此篇论文获得了ICCV最佳学生论文奖,指导人是FBAI的He Kainming大神: 众所周知,detector主要分为以下两大门派: - one stage系 two stage系 代表性算法 YOLOv1、SSD、YOLOv2...
阅读(18) 评论(0)

深度学习: ILSVRC竞赛

Large Scale Visual Recognition Challenge (ILSVRC): - ILSVR 全称 ImageNet Large Scale Visual Recognition Competition 举办单位 ImageNe...
阅读(33) 评论(0)

论文阅读: ShuffleNet

Introduction ShuffleNet是Face++为了产品落地而做的。主要的贡献在于大幅砍削了浮点计算次数。 作者注意到,像Xception、ResNeXt这么好的网络结构,一旦被压缩为小网络,就会性能低下。这也导致了这类先进的网络结构无法被落地到移动设备上。 究其原因,发现是因为...
阅读(8) 评论(0)

论文阅读: YOLOv3

Introduction 首先,我要贴出大神霸气侧漏的论文Introduction: 这可以解释为“艺高人狂妄”么?(→_→) 该文章继承了YOLOv2的bbox预测任务的方法,对bbox分类任务进行了修改 (用简单的logistic替换下softmax) 。 将DarkNet-1...
阅读(19) 评论(0)

论文阅读: YOLOv2

Introduction 本文获得了CVPR 2017 Best Paper Honorable Mention: 行文思路自成一体,按照 Better、Faster、Stronger 三个章节来分布介绍其贡献。 Better 概括来说就是一堆的小细节。 引入Batch Nor...
阅读(18) 评论(0)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 26万+
    积分: 8393
    排名: 3017
    About
    博客专栏