spark进阶(五):DataFrame和DataSet使用

本文深入探讨Spark中的DataFrame和DataSet,包括它们的创建、转换及使用练习。通过实例展示了如何从RDD转换到DataFrame和DataSet,以及如何进行数据处理,如统计最常见电影类型、最受欢迎的电影等。同时,文章还涵盖了使用SQL操作DataFrame,以及数据的存储方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

spark进阶(五):DataFrame和DataSet使用

DataFrame是Spark SQL提供的一个编程抽象,与RDD类似,也是一个分布式的数据集合。但与RDD不同的是,DataFrame的数据都被组织到有名字的列中,就像关系型数据库中的表一样。此外,多种数据都可以转化为DataFrame,例如Spark计算过程中生成的RDD、结构化数据文件、Hive中的表、外部数据库等。

在Spark中,一个DataFrame所代表的是一个元素类型为Row的Dataset,即DataFrame只是Dataset[Row]的一个类型别名。相对于RDD,Dataset提供了强类型支持,在RDD的每行数据加了类型约束。而且使用DatasetAPI同样会经过Spark SQL优化器的优化,从而提高程序执行效率。

DataFrame和R的数据结构以及python pandas DataFrame的数据结构和操作基本一致。

一、创建DataFrame、DataSet

  • 创建RDD
  • RDD转化为ROW
  • 通过ROW和元数据信息生成DataFrame
  • 然后通过DataFrame和对应的类转化为DataSet
  • 也就是说DataFrame是DataSet[Row],这里可以通过指定的类将其转化,DataSet[User]
  • 需要注意的事转化使用的类需要时内部类,然后就是类里的变量名要和元数据信息的列名保持对齐
/**
 * @author: ffzs
 * @Date: 2021/10/7 上午8:33
 */
object MovieLenDataSet {
   
  case class User(UserID:String, Gender:String, Age:String, Occupation:String, Zip_Code:String)
  def main(args: Array[String]): Unit = {
   
    Logger.getLogger("org").setLevel(Level.ERROR)
    val spark = SparkSession.builder()
      .appName("MovieLenDataSet")
      .master("local[*]")
      .getOrCreate()
    import spark.implicits._

    val dataPath = "/home/ffzs/data/ml-1m"
    val schema4users = StructType(
      "UserID::Gender::Age::Occupation::Zip_code"
        .split("::")
        .map(it => StructField(it, StringType, nullable = true))
    )

    val usersRdd = spark.sparkContext.textFile(f"$dataPath/users.dat")
    val usersRows = usersRdd.map(_.split("::"))
      .map(it => {
   
        it.map(_.trim)
      })
      .map(it => Row(it(0), it(1), it(2), it(3), it(4)))
    val usersDF: DataFrame = spark.createDataFrame(usersRows, schema4users)
    val usersDataSet = usersDF.as[User]
    usersDataSet.show(5)
  }
}

二、DataSet使用练习

1.最常见电影类型
  • 对电影类型进行split,然后再聚合计数
  • 然后再通过计数进行排序
println("最常见电影类型:"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值