GCPC 2018 M Mountaineers(mst LCA)

题目链接:https://codeforces.com/group/xrTA2IaQje/contest/256790

 

题目大意:给出n*m的地图,每个点表示山的高度,问从x,y走到s,t的过程中最高的山最小是多少

 

题目思路:想了好久没想出来,后来看了题解。想要满足条件,就可以使用mst,让所有的点都连起来的代价最少的边。得到最小生成树后,就是求得树上两点间的最大值即可

 

以下是代码:

#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define per(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
const int MAXN = 1000+5;
const int MAXM = 1e6+5;
const int MOD = 1e9+7;
int n,m,T;
int mp[MAXN][MAXN],f[MAXM][21];
int h[MAXM],fa[MAXM];
int dir[4][2]={1,0,-1,0,0,1,0,-1};
int x,y,p1,q1,t;
struct rec{int x,y,z;}edge[MAXM];
bool operator <(rec a,rec b){
    return a.z<b.z;
}
int Find(int x){
    return fa[x]==x?x:fa[x]=Find(fa[x]);
}
struct node{
    int to,val;
}a;
vector<node>v[MAXM];
queue<int>q;
int d[MAXM],maxx[MAXM][21];
int lca(int x,int y){
    if(d[x]>d[y])swap(x,y);
    int ans=0;
    per(i,t,0){
        if(d[f[y][i]]>=d[x])ans=max(ans,maxx[y][i]),y=f[y][i];
    }
    if(x==y)return ans;
    per(i,t,0){
        if(f[x][i]!=f[y][i])ans=max(ans,max(maxx[x][i],maxx[y][i])),x=f[x][i],y=f[y][i];
    }
    ans=max(ans,maxx[x][0]);
    ans=max(ans,maxx[y][0]);
    return ans;
}
int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    while(cin>>n>>m>>T){
        t=(int)(log(n*m)/log(2))+1;
        memset(d,0,sizeof(d));
        memset(maxx,0,sizeof(maxx));
        rep(i,1,n){
            rep(j,1,m){
                cin>>mp[i][j];
            }
        }
        rep(i,1,n*m)fa[i]=i,v[i].clear();
        int tot=0;
        rep(i,1,n){
            rep(j,1,m){
                rep(k,0,3){
                    int xx=i+dir[k][0];
                    int yy=j+dir[k][1];
                    if(xx>=1&&xx<=n&&yy>=1&&yy<=m){
                        edge[++tot].x=(i-1)*m+j,
                        edge[tot].y=(xx-1)*m+yy;
                        edge[tot].z=max(mp[i][j],mp[xx][yy]);
                    }
                }
            }
        }
        while(!q.empty())q.pop();
        sort(edge+1,edge+tot+1);
        rep(i,1,tot){
            int x=Find(edge[i].x);
            int y=Find(edge[i].y);
            if(x==y)continue;
            fa[x]=y;
            a.to=edge[i].y,a.val=edge[i].z;
            v[edge[i].x].push_back(a);
            a.to=edge[i].x,a.val=edge[i].z;
            v[edge[i].y].push_back(a);
        }
        q.push(1);
        d[1]=1;
        while(q.size()){
            int x=q.front();q.pop();
            int len=v[x].size();
            rep(i,0,len-1){
                int y=v[x][i].to;
                if(d[y])continue;
                d[y]=d[x]+1;
                f[y][0]=x;
                maxx[y][0]=v[x][i].val;
                rep(j,1,t){
                    f[y][j]=f[f[y][j-1]][j-1];
                    maxx[y][j]=max(maxx[y][j-1],maxx[f[y][j-1]][j-1]);
                }
                q.push(y);
            }
        }
        while(T--){
            cin>>x>>y>>p1>>q1;
            if(x==p1&&y==q1){
                cout<<mp[x][y]<<endl;continue;
            }
            cout<<lca((x-1)*m+y,(p1-1)*m+q1)<<endl;
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值