arm64下安装pytorch,torchvision,torchaudio以及它们之间的版本对应关系

本文档详细介绍了如何在ARM64架构上安装PyTorch、Torchvision和Torchaudio。首先,建议在虚拟环境中操作,如Anaconda或pyenv。对于PyTorch,可以从PyPI下载匹配Python版本的whl文件并使用pip安装。接着,同样方式安装Torchvision。关于两者对应关系,可查阅官方文档。最后,安装Torchaudio可以直接通过pip完成,它会自动匹配已安装的PyTorch版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先强烈建议在虚拟环境下安装!anaconda或者pyenv皆可。

1. 安装pytorch for arm64

pip install torch-1.11.0-cp38-cp38-manylinux2014_aarch64.whl

2. 安装torchvison for arm64

pip install torchvision-0.12.0-cp38-cp38-manylinux2014_aarch64.whl

3. pytorch和torchvison的对应关系(即时更新)

如果寻找pytorchtorchvison的对应关系呢?
官网链接:
pytorch/vision: Datasets, Transforms and Models specific to Computer Vision
以下是2022年5月17日的截图,若有更新请移步官网。
在这里插入图片描述

4. 安装torchaudio for arm64

安装好torch/torchvision之后,直接使用pip安装即可。

$ pip install torchaudio
Collecting torchaudio
  Downloading torchaudio-0.11.0-cp38-cp38-manylinux2014_aarch64.whl (3.3 MB)
     |████████████████████████████████| 3.3 MB 1.5 MB/s
Requirement already satisfied: torch in /home/ubuntu/.pyenv/versions/3.8.10/envs/v831/lib/python3.8/site-packages (from torchaudio) (1.11.0)
Requirement already satisfied: typing-extensions in /home/ubuntu/.pyenv/versions/3.8.10/envs/v831/lib/python3.8/site-packages (from torch->torchaudio) (4.2.0)
Installing collected packages: torchaudio
Successfully installed torchaudio-0.11.0

5. pytorch以及torchaudio的版本对应关系

官网链接:
pytorch/audio: Data manipulation and transformation for audio signal processing, powered by PyTorch
以下是2022年6月5日的截图,若有更新请移步官网。
在这里插入图片描述
在这里插入图片描述

### 如何在aarch64架构上安装支持GPU的PyTorch #### 安装前准备 为了成功部署适用于aarch64架构并带有GPU加速功能的PyTorch环境,需先确认目标机器已正确设置好CUDA和cuDNN库。对于基于ARM架构的设备而言,这一步骤尤为关键,因为并非所有的预构建二进制文件都兼容此类硬件配置[^3]。 #### CUDA验证 确保本地环境中已经安装了适当版本的CUDA工具链。可以通过命令`nvcc -V`来查询当前系统的CUDA版本号。此操作有助于后续选择相匹配的PyTorch发行版[^5]。 #### Anaconda环境搭建 建议采用Anaconda作为Python包管理器,因为它能简化依赖关系管理和隔离工作区。具体做法如下: 1. 下载适合aarch64平台的Anaconda或Miniconda安装脚本; 2. 创建一个新的Conda虚拟环境,并指定所需的Python版本(例如3.7); 3. 激活新建的虚拟环境以便继续下一步的操作。 ```bash # 假设选择了Miniconda wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh bash Miniconda3-latest-Linux-aarch64.sh source ~/.bashrc conda create --name pytorch_env python=3.7 conda activate pytorch_env ``` #### PyTorch GPU版本获取途径 鉴于官方渠道可能缺乏直接针对aarch64架构的支持,推荐利用第三方提供的轮子仓库进行安装。这里给出了一种方法是从特定链接下载经过适配后的PyTorch及其配套组件。 ```bash pip install torch==1.8.0+cu102 torchvision==0.9.0+cu102 torchaudio===0.8.0 -f https://download.pytorch.org/whl/torch_stable.html ``` 需要注意的是,在执行上述指令之前,请务必核实所选PyTorch版本与现有CUDA版本之间的兼容性。此外,如果遇到网络连接受限的情况,则可以考虑预先下载对应.whl文件并通过离线方式完成安装过程。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值