【文献阅读-综述】Survey of Graph Neural Networks and Applications(2022)

文献阅读-综述Survey of Graph Neural Networks and Applications (2022)

文献链接:https://www.hindawi.com/journals/wcmc/2022/9261537/

Survey of Graph Neural Networks and Applications
图神经网络及应用概览
作者:Fan Liang, Cheng Qian, Wei Yu, David Griffith, and Nada Golmie


摘要

本文主要介绍利用图神经网络处理非欧氏空间数据集的方法。

深度学习的发展在各种应用(语音、图像和视频分类)中显示出巨大潜力。在这些应用中,深度学习模型是通过欧几里得空间(Euclidean Space)中具有固定维度和序列的数据集进行训练的。然而,随着对非欧几里得空间数据集分析需求的快速增长,需要进行更多的研究。一般来说,找到数据集中元素之间的关系,并将这种关系表示为由顶点和边组成的加权是分析非欧几里得空间数据集的一种可行方法。然而,在现有的深度学习模型中,分析基于加权图的数据集是一个具有挑战性的问题。为了解决这个问题,图神经网络(GNN)利用谱域和空间策略来扩展和实现非欧几里得空间的卷积操作。基于图论,人们提出了许多增强型图神经网络来处理非欧几里得数据集。在本研究中,我们首先回顾了人工神经网络和 GNN。然后,我们介绍了扩展深度学习模型以处理非欧几里得空间数据集的方法,并介绍了基于光谱和空间策略的 GNN 方法。此外,我们还讨论了一些采用光谱和空间卷积策略的典型物联网(IoT)应用,最后介绍了现阶段 GNN 的局限性。


以下是本篇文章正文内容

一、引言 Introduction

人工神经网络是一种对复杂系统进行数据驱动建模和分析的可行技术,可进一步用于提高系统的高效智能监测、控制和管理。现有的神经网络 (卷积神经网络 (CNN)[^1]、循环神经网络 (RNN) [^2]等) 已被用于不同的问题领域 (物联网等) ,支持各种任务 (预测、分类、识别、跟踪、编码设计和数据生成等[^3-9]) 。神经网络可以提高数据分析的效率,并发现复杂动态系统的数据集之间的隐藏关系,这些数据集是通过对调查数据集进行特征提取得到的。在计算能力的快速发展以及架构和模型得到优化的基础上,神经网络在处理大量复杂数据方面表现出了强大的能力[^10-12] 。例如,卷积神经网络(CNNs)处理图像分类、视频、文本识别、音频识别,将所有训练数据视为欧几里得空间中的数据。在图像分类中,CNNs将一个图片表示成固定维度的矩阵,这是在欧氏空间处理数据集的典型方法。随后,CNNs利用一个固定滤波器提取图片的特征,从而识别和汇总有意义的局部特征,并进一步用于图像识别的分类。

尽管CNNs和RNNs在处理欧氏空间数据时很好用,在处理非欧式空间的数据时仍然存在难以解决的问题。例如社交媒体和电子商务应用都是典型的会产生图数据的场景,图数据是非欧氏空间内数据的典例。社交媒体和电子商务应用可以为个人提供推荐和评级信息,这些软件分析多种数据源(如:用户数据、市场数据),从而提供能够满足个人需求的精准信息。因为这些来自不同用户和市场的数据是动态的,并且在多个维度相关联,很难将它们形式化到欧氏空间中。相反,这些数据可以通过图结构轻易表示出来,但现有的CNNs和RNNs不能处理具有图结构的数据。于是,图数据的复杂性、高多样性和不规则形对现有的神经网络提出巨大挑战。
需要注意的是,非欧式空间中的数据没有固定结构,无序节点之间的关系也会随着时间的推移迅速变化,因此现有神经网络的卷积运算无法从非欧氏空间中提取数据特征。例如,CNN使用固定的卷积核“滤波器(filters)”从具有静态结构的2D或3D数据集中提取特征。但利用固定滤波器从非欧空间数据集中提取特征是不可能的,因为它们拥有动态结构。因此设计一种新型神经网络处理非欧氏空间的数据是必要的。

作为一种新型神经网络,图神经网络(GNN)用于从非欧式空间数据中提取特征。受CNN启发,GNN使用可扩展核(scalable kernel)对非欧氏空间的数据进行卷积。为了实现非欧空间的卷积运算,Sener 和 Savarese[^13] 提出一种主动学习方案,让卷积核自己选择合适的大小从而适应动态的非欧氏空间数据。基于主动学习方案,Bronstein等人[^14] 利用一种可变卷积核从非欧氏空间数据中提取特征,即数据驱动卷积。一些现有研究对GNN的不同变体进行调查[^15-17]。
过去几年有很多新GNN模型和方法被提出,例如空间卷积方法[^18-19] ,这些是现有GNN研究中没有涉及到的。研究[^20]调查了目前在优化硬件和软件方面提升GNN性能上所做的努力。与之相对,我们的研究着眼于介绍GNN的发展,它将卷积方法从欧氏空间扩展到了非欧氏空间。我们详细介绍了现有的使用谱域和空间域策略的基于GNN的方法。此外,我们回顾并讨论了将GNN应用于能源、交通和工业领域一些典型物联网(IoT)系统的工作。

总结

  1. 详细介绍了人工神经网络的背景,并回顾发展历程。基于传统人工神经网络(RNN、CNN等)在非欧氏空间数据上的限制,详细讨论了使用RNNs和CNNs分析非欧氏空间数据的问题。阐述将神经网络扩展到非欧氏空间的动力。
  2. 调研现有分析非欧氏空间数据的策略,对处理非欧氏空间数据的GNN模型进行了全面回顾,从谱域和空间域介绍这些策略,讨论利弊。总结了关于GNN的现有研究和工作,讨论代表性技术。
  3. IoT是GNN的一个潜在应用领域,回顾了现有研究,提供不同IoT系统应用GNN的实例,例如在智慧交通系统中进行交通预测,在智慧电网中进行电力预测(如停电、太阳能辐照度),以及在工业物联网系统中进行资源管理。从普遍性和学习复杂性方面讨论了GNN的局限性。

一些关于GNN的现有研究:
[^21]关注基于图的模型的泛化能力。
[^22]全面回顾现有GNN模型并提出基于模型结构的分类法。
[^20]回顾在提升GNNs性能上,从计算角度优化硬件和软件方面的工作。
本文重点是介绍 GNN 的发展,它将卷积方法从欧几里得空间扩展到了非欧几里得空间。详细介绍现有基于GNN的方法,将基于训练数据转换将现有GNN模型分为谱域策略和空间域策略。讨论在典型物联网系统应用GNN的工作以及GNNs的不足

二、背景 Background

2.1 人工神经网络 Artificial Neural Networks

人工神经网络利用生物学神经的概念,用于解决复杂计算任务(识别、分类等)。人工神经网络基于加权图和有向图,顶点可以视为神经元,边视为连接神经元的突触。 在每个神经元中,超越函数(transcendental function)用于计算和汇总前一个神经元输出的加权和,并将结果(或经验)传递给附近相连的神经元。这样,来自不同神经元的结果可以汇总与合成,产生复杂的输出结果,如 图像分类。

20世纪40年代以来,人工神经网络经历了几次失败和复兴。例如1961年,Rosenblatt [^23] 提出感知器(perceptrons)的基本概念,这是人工神经网络的基础。由于计算能力的限制,当时很难实现复杂神经网络。到80年代,Hopfield [^24] 第一次在新型集体物理计算节点上实现了神经网络。受之鼓舞,Sejnowski [^25] 提出玻尔兹曼机(Boltzmann machine),利用随机二进制处理单元处理非线性网络中不同神经元之间的相互作用。这一工作大大降低饿了训练神经网络的时间复杂性,并引入了慢速递增学习(slow-incremental learning)来克服遗忘。Werbos [^26] 提出反向传播(backpropagation)算法,对递归系统的权重和偏置进行迭代优化,提高神经网络的性能。

20世纪90年代,算力的提升催生了实现神经网络方面的新的工作。Pineda [^27] 将反向传播算法推广到RNNs,并利用优化的反向传播算法提高了对非线性函数的计算能力。McEliece [^28] 发展了信息和编码理论,为计算机模拟神经网络提供数学框架。后来很多研究集中于创建复杂的回归和分类函数。例如在统计领域,[^29] 设计了一个涉及数百变量的函数非线性模型。
此外,深度神经网络(DNN)和CNN将数据从时间域扩展到空间域,利用卷积从二维或三维数据集中提取特征。

2.2 图神经网络 Graph Neural Networks(GNNs)

首先介绍图数据集(非欧氏空间数据),随后介绍在非欧氏空间处理数据的动机,最后概述GNN的路线图。

2.2.1 图数据集

定义:一种非欧几里得空间的数据结构,由一组对象(顶点)和这些对象之间的关系(边)组成。
图可以表达复杂的动态数据,尤其是时变数据集之间的逻辑关系,因此图结构可用于表示具有动态维度的数据集。
例如社交网络数据、微观分子结构数据和骨骼运动数据 [^32] 。
图1 展示了欧氏空间和非欧氏空间数据的区别。一般来说,欧式空间数据拥有固定维度,输入数据必须按照由这些维度决定的特定顺序排列。反之,非欧氏空间数据拥有动态维度,输入数据可以不是特定顺序
在这里插入图片描述

2.2.2 动机

现实世界一些场景,数据无法映射到欧几里得空间。欧氏空间由 R n \mathbb R^n Rn定义,欧氏空间数据能够被建模并表示为n维线性空间的一组点。例如,在呈现图像时,定义x和y坐标来表示每个像素的位置,定义z坐标来表示灰度图像的灰度值(intensity),或者定义一组z坐标来表示彩色图像中每个RGB(red-green-blue)或CMYK(cyan-magenta-yellow-black)值的强度。因此,图像或者彩图的RGB或CMYK成分集可以看作三维欧氏空间中的数据。然而,由于动态维度的原因,很难用n维线性空间对一些数据(如社交网络数据)进行编码,如果要将这些数据映射到欧氏空间,会损失重要信息(如数据项之间的关系)。此外,由于数据项之间的关系是动态的,难以通过增加维度来保留信息。因此有必要将用于机器学习的数据结构集从欧氏空间扩展到非欧式空间。

非欧氏空间的数据拥有动态维度。典型神经网络(如CNN)只定义了固定卷积核来聚合特征。因此CNNs不能处理非欧空间数据。GNNs可以提取并结合多尺度局部空间数据的特征,具有很强的表征能力,将深度学习模型扩展到非欧氏空间数据。GNNs继承了CNNs的主要优点(如局部连接、共享权重和多层使用multilayer usage)。这些特性对于解决基于图的应用问题很重要。作为一种独特的非欧几里得数据结构,图在节点分类(node classification)、链接预测(link prediction)和聚类分析(cluster analysis)方面备受关注 [^25]。由于具有较高的可解释性,GNN 近来已成为一种广泛应用的图分析方法。

2.2.3 GNN路线图

图2 展示了GNNs的路线图。与CNN类似,为了聚合数据特征,GNN同样采用卷积过程。二者的不同在于GNN处理图中的卷积,而CNN处理欧氏空间数据的离散卷积。
普通卷积的计算复杂度由卷积核的数量和大小决定。非欧几里得空间数据是高维数据。随着维数的增加,卷积核的数量也随之增加,从而导致计算复杂度大大提高。此外,使用固定大小的卷积核可能会导致非欧几里得空间数据的关键信息丢失。传统的离散卷积无法维持非欧几里得空间数据的平移不变性。因为在欧几里得空间数据中,数据结构是固定的,每个数据元素的邻域数是相同的,因此离散卷积可以使用固定大小卷积核来聚合特征。但对于非欧几里得空间数据,由于拓扑图中每个顶点的相邻顶点数可能不同,很难使用固定大小的卷积核。
在这里插入图片描述

下面提出的是两种改进CNN的方法
要处理非欧几里得空间数据,一种可行的方法是利用动态核尺寸来适应数据。Chollet [^33] 提出了一种深度可分离卷积,专门用于解决非欧几里得空间数据的动态维度问题。与传统卷积相比,深度可分离卷积采用了两种大小不同的卷积核。首先利用大尺寸卷积核提取特征,随后将提取的特征通过小尺寸的卷积核,实现特征汇总。动态卷积核尺寸能够处理数据的动态维度。

另一种方法是扩大卷积核的尺寸,增加卷积核的感受野(receptive fields)。这样特征可以尽可能多地聚集。要扩大卷积核感受野,研究 [^34-36] 提出膨胀卷积(dilated convolution)。膨胀卷积好处在于维持卷积核的实际大小(降低计算复杂度),但同时增加感受野。通过设置不同的膨胀率,膨胀卷积可以显著提升高纬度数据分类的能力。

不过上述方法还有局限性。首先,需要根据数据特征(如图的连通性)手动调整核的大小或膨胀率,也就是说用户难以创建一个适合不同数据集的通用网络模型。其次,由于难以将权重信息应用到网络模型中,处理复杂的图数据结构仍然很困难。因此,GNNs被提出,将图论与卷积结合起来,从而有效处理图数据 [^23]。

实现GNN主要有两种策略,一是依靠频谱图理论,将数据从空间域转换到谱域,用于进一步处理 [^33]。另一种是不依赖图论,而是直接涉及空间域的卷积过程 [^33]。

三、谱域卷积策略 Spectral Convolution Strategy

首先简要描述谱域卷积的基础,随后调研现有的利用谱卷积策略的GNN模型,并对现有模型进行分类和比较。

3.1 谱图理论 Spectral Graph Theory

为了解决CNN在图中不能处理卷积的问题,Shuman等人 [^37] 利用谱图理论提出一种基于图信号处理(graph signal processing,GSP)的方案。GSP定义了图的傅里叶变换(Fourier transform)。此外,GSP在谱域定义了图的卷积(谱域图卷积)。基于GSP,Bruna等人 [^38] 提出频谱卷积神经网络(Spectral Convolution Neural Network,SCNN)来聚合图的特征,也就是最初的图神经网络。谱图理论是GNN的基础。

将图从空间域转换到谱域时要用到离散傅里叶变换。这一过程称为图傅里叶变换。在应用离散傅里叶变换之前需要为顶点设置一组正交基。首先对拉普拉斯矩阵进行谱分解(拉普拉斯矩阵是图的度矩阵与邻接矩阵之差),得到n个线性独立的特征向量,构成一个正交基。图傅里叶变换将正交基投影到正交空间,相当于将图上定义的任意向量表示为图拉普拉斯矩阵特征向量的线性组合

标准图傅里叶变换:
G F [ f ] ( λ l ) = f ^ ( λ l ) = ∑ i = 1 N f ( i ) u l ( i ) ( 1 ) \mathscr{GF}[f](\lambda_l)=\hat{f}(\lambda_l)=\sum_{i=1}^{N}f(i)u_l(i) \qquad(1) GF[f](λl)=f^(λl)=i=1Nf(i)ul(i)(1)

f f f是一个将图的顶点映射为实数的函数, λ l \lambda_l λl表示拉普拉斯矩阵的 l t h l^{th} lth特征值, u l ( i ) u_l(i) ul(i)表示 l t h l^{th} lth特征向量的第 i i i个元素。图傅里叶变换(离散傅里叶变换)是对 λ l \lambda_l λl u l u_l ul的内积运算。
公式(1)中应用矩阵乘法,作为图傅里叶变换的矩阵表达式。
简化后的表示:
f ^ = U T f ( 2 ) \hat{f}=U^Tf \qquad(2) f^=UTf(2)
特征矩阵U可以由拉普拉斯矩阵( L = D − A L=D-A L=DA)计算得到。
G = ( V , E ) G=(V,E) G=(V,E),拉普拉斯矩阵 L L L,度矩阵 D D D(对角阵),邻接矩阵 A A A图3 给出了示例。基于拉普拉斯矩阵 L L L,可以利用特征分解得到特征矩阵 U U U
在这里插入图片描述

3.2 谱图卷积 Spectral Graph Convolution

在回顾了谱图理论之后,现在介绍谱图卷积。谱图理论中的标准卷积机制可以用图傅里叶变换来实现,因为卷积和乘法之间的二元性(duality)与标准傅里叶变换类似:
F [ f 1 ( t ) ⋆ f 2 ( t ) ] = F 1 ( ω ) ⋅ F 2 ( ω ) ( 3 ) \mathscr{F}[f_1(t)\star f_2(t)]=F_1(\omega)\cdot F_2(\omega) \qquad(3) F[f1(t)f2(t)]=F1(ω)F2(ω)(3)

f 1 ( t ) f_1(t) f1(t) 定义为空间输入信号, f 2 ( t ) f_2(t) f2(t) 定义为空间卷积核,将 F 1 ( ω ) F_1(\omega) F1(ω) 定义为频谱输入信号, F 2 ( ω ) F_2(\omega) F2(ω) 定义为频谱卷积核。
公式(3) 展示了谱图卷积的实现,首先将空间信号转换到频谱域,得到频谱信号与频谱卷积核的乘积。然后可以对结果进行反图傅里叶变换,得到空间域的最终结果。

如上所述,空间域的卷积运算有序列顺序和固定维度的要求,这给处理图数据带来了困难。例如,给定一个卷积核尺寸3×3,定义核中心为中心元素,周围的邻域为感受野(receptive field)。在空间域,核尺寸是固定的。因此,对于输入数据的每个中心元素,3×3的核有八个邻域元素进行卷积运算,这表明感受野的大小必须是固定的。然而在图里,邻居的数量是不确定的,因此很难确定感受野的固定大小。此外,元素在图中的排列并不均匀。因此,很难给卷积核的步长指定一个单一的值。不过,谱域中可以利用每个频率的可调分量(adjustable component)来处理动态感受野。可调分量会随着感受野的变化而变化,因此可以建立一个适合频谱域动态情况的感受野。

3.3 典型谱域GNN Typical Spectral GNN

介绍典型的谱域GNN模型,回顾现有利用谱卷积策略的研究。

3.3.1 谱域CNN

Bruna等人[^38] 提出谱图卷积网络。使用自学习对角矩阵(self-learning diagonal matrix)代替谱域卷积核,文中修改了公式(3), 提出自学习参数集 g θ g_\theta gθ。卷积核表示为:
X ⋆ G g θ = U Λ U T X ( 4 ) X\star_Gg_\theta=U\Lambda U^TX \qquad(4) XGgθ=UΛUTX(4)
是各向异性卷积(anisotropic convolution)的离散化。
X ∈ R N X\in\mathbb{R}^N XRN 为N维向量, ⋆ G \star_G G表示图卷积, U U U是包含特征向量的矩阵, Λ \Lambda Λ是对角阵。文中利用自学习对角阵计算顶点的特征值。

谱域CNN有很多局限性。首先是高时间复杂度,在图里,拉普拉斯矩阵的特征分解(feature decomposition)需要对所有元素进行,此外需要计算每次前向传播中 U , Λ , U T U,\Lambda,U^T U,Λ,UT的乘积,特征向量矩阵 U U U的时间复杂度为 O ( n 2 ) O(n^2) O(n2),时间复杂度很高,尤其是对于一些大规模的图。另外,卷积核的参数数量取决于顶点数量。因此这一方法不适合由大量顶点组成的图。

3.3.2 ChebNet

为了降低计算(或时间)复杂度,Defferrard等人[^39] 提出用切比雪夫多项式作为滤波器,利用多项式拟合来降低卷积核的时间复杂度。方案的关键在于定义切比雪夫多项式滤波器。公式(4) 的时间复杂度很高,要降低,Hammond等人[^40] 提出了自学习参数集 g θ g_\theta gθ的多项式近似值,该值由截断的切比雪夫多项式展开得到:
g θ = g θ ( Λ ) = ∑ i = 0 K − 1 θ i T k ( Λ ~ ) ( 5 ) g_\theta=g_\theta(\Lambda)=\sum_{i=0}^{K-1}\theta_iT_k(\tilde{\Lambda}) \qquad(5) gθ=gθ(Λ)=i=0K1θiTk(Λ~)(5)

Λ ~ \tilde{\Lambda} Λ~为可调特征向量矩阵,对其进行调整以满足截断切比雪夫多项式的展开要求。 θ i \theta_i θi是切比雪夫系数。
切比雪夫多项式服从递推关系:
T k ( x ) = 2 x T k − 1 ( x ) − T k − 2 ( x ) T_k(x)=2xT_{k-1}(x)-T_{k-2}(x) Tk(x)=2xTk1(x)Tk2(x)

与谱域CNN相比,切比雪夫表达式是K-局部(K-localized)的,具有局部连通性,因为它是K次多项式。此外,切比雪夫表达式能识别卷积过程中最长的一步(与中心元素距离为K)。 T k ( Λ ~ ) T_k(\tilde{\Lambda}) Tk(Λ~的时间复杂度为 O ( ∣ E ∣ ) O(|E|) O(E),与边(edge)的数量E成正比。因此总的时间复杂度表示为 O ( K ∣ E ∣ ) O(K|E|) O(KE)。输入数据为稀疏图时,可以明显降低时间复杂度,比 O ( n 2 ) O(n^2) O(n2)小得多。

3.3.3 图卷积网络

基于谱卷积核切比雪夫模型,Kipf和Welling[^41] 提出图卷积网络(GCNs),也叫一阶ChebNet。GCN是GNN的基础模型,许多研究室基于GCNs来开发新的GNN模型
[^41] 中有两个关键贡献:首先,与直接操作图结构数据的方案[^38-39] 相比,文中提出了一种基于一阶近似的简单近似层,简化了运算;其次,对图结构神经网络模型,验证其快速、可扩展地处理图相关数据的半监督分类。在一些现有公开数据集上,文中提出的方案的效率和准确性得到了验证。

图4展示了GCN的结构。
在这里插入图片描述

输入的是整个图。
在卷积层1(Convolution Layer 1)中,对每个节点的相邻节点进行卷积操作,并用卷积结果更新节点。
随后GCN对卷积结果采用激活函数(如ReLu)。
激活层的输出传递至另一卷积层和激活层,也就是第二个循环。
这一过程会重复,直到输出接近精度要求。
因此GCN可以增加卷积层的深度,从而使精度满足特定案例的需求。GCN有一个局部输出函数,用于将节点状态(包括隐藏状态和节点特特征)转换为任务相关的标签。

GCN一般有两种不同的任务:一种是节点级任务,例如社交媒体账户分类,主要是对不同的节点进行分类,每个社交媒体账户都是一个图中的节点;另一种是图层面的任务,例如化合物分类,主要是对不同的图进行分类,化合物可以形式化为图
卷积操作侧重于更新单个节点的隐藏状态,从而提取节点特征[^42-44] 。为了聚合整张图的特征,GCN在卷积层之后采用了可微分池化[^45-46] ,这样,GCN就能提取节点特征,并利用软聚类(soft clustering)和节点特征来计算图的表示。基于图的表示,可以得到整个图的特征。

3.3.4 现有谱域卷积方案总结

基于谱域卷积策略的总结见原论文 表格2 ,比较了现有研究的任务、输入参数、输入数据、卷积层数、性能和时间复杂度。

四、空域卷积策略 Spatial Convolution Strategy

介绍空域卷积策略,首先是空域卷积的原理,然后回顾现有运用空域卷积的GNN模型,最后总结采用了空域卷积策略的现有研究。

4.1 空域图卷积 Spatial Graph Convolution

在使用谱图卷积策略时存在一些问题。
首先,谱图卷积策略不适合有向图(directed graphs)。尽管大多数现实世界的数据可以被形式化为无向图(undirected graphs),但有些交通数据或路由数据(routing data)能形式化为有向图,不允许使用图傅里叶变换,也不能将空间信息转换到频谱域。此外,由于拉普拉斯特征矩阵 U 的不变性(immutability),在训练过程中不能改变图的结构(如边的权重、节点的添加或删除)。然而,在包括社交网络数据在内的实际应用中,图是高度动态的。最后,谱 CNN 的计算密集且耗时,虽然 ChebNet 和 GCN 降低了时间复杂度,但它们只能处理少量参数,这是 ChebNet 和 GCN 的局限性。
因此,有一些研究侧重于空间卷积策略,倾向于将非欧几里得空间数据转换为欧几里得空间数据,以便直接进行卷积。

4.2 典型空域图神经网络 Typical Spatial Graph Neural Networks

介绍四种采用空域卷积的不同的神经网络。每种网络特征见原论文 表格3

4.2.1 图神经网络(GNN)

GNN将图转换为欧氏空间数据,并对数据进行一般卷积。在GNN中成功完成卷积分三步:
首先,确定每个节点的邻域。由于邻域节点在非欧几里得空间数据中是动态的,因此在定义卷积核之前必须先确定邻域。
其次,定义卷积核的场(field)。
最后,对场和卷积核中的相应元素进行内积,这与欧几里得空间中的卷积类似

图5 给出了一个在欧几里得空间中采用3×3滤波器进行卷积,从原始图像中提取特征的例子。
在这里插入图片描述

图6 给出了一个使用GNN进行卷积的例子。
在这里插入图片描述
可以看出,在非欧几里得数据集的卷积过程中,滤波器没有固定的结构。滤波器的结构取决于邻域

确定邻域是一个重要步骤。为此,Hechtlinger 等人[^93] 采用随机漫步(random walk) 的方法来确定图中的邻域。在他们的研究中,定义了以下参数:P 矩阵是随机行走过渡矩阵(即 P i j P_{ij} Pij 是节点 i 到节点 j 的过渡概率);S 矩阵是相似度矩阵,其元素表示图节点的相似程度;D 矩阵是度矩阵。给定图 G,P 可定义为 P = D − 1 S P=D^{-1}S P=D1S。此外, p k p^k pk 代表多步转换矩阵(multistep transition matrix),它的第 ( i , j ) (i, j) (i,j)个元素是随机漫步在 k 步内从节点 i 移动到节点 j 的概率。增加 k 的值会增大邻域的大小。

4.2.2 图采样和聚合(GraphSAGE)

Graph Sample and Aggregate (GraphSAGE)由Hamilton等人[^94] 提出,在该研究中,图卷积可以通过采样和聚合来实现。与 GNN 不同的是,聚合函数的输入顺序对 GraphSAGE 的结果没有影响,这意味着 GraphSAGE 可以处理无序的邻居节点。
GraphSAGE包括三个关键步骤:

  1. 通过采样获得固定数量的邻近节点;
  2. 利用聚合函数获得邻近节点的聚合信息,从而获得中心元素的特征;
  3. 利用邻近节点的聚合信息对中心元素的内容或标签进行分类或预测。

文中采用了均匀采样策略(uniform sampling strategy)来选择固定数量的邻居节点。在相连的一阶节点上重复均匀采样,即可获得包含固定数量节点的邻域。
此外,文中提出了三种聚合器:
第一个是均值聚合器(mean aggregator),由权重矩阵和非线性激活函数计算得出;第二个聚合器称为长短期记忆(long short-term memory,LSTM)聚合器,是均值聚合器的更新版本,在 LSTM 聚合器中,输入数据需要按顺序排列,也因此比均值聚合器显示出更强的表达能力;最后一个聚合器是池聚合器(pool aggregator),每个邻居的矢量都被完全输入到前向传播中,在前向传播之后,最大池聚合会聚合整个邻域的特征。

4.2.3 图注意力网络(GAT)

Veličković 等人[^95] 提出了一种图注意网络(Graph Attention Network,GAT),将注意力机制引入图卷积模型,并使用注意力机制来模拟节点之间的相关性。文中指出GNN和GraphSAGE的不足在于对所有节点采用相同的卷积核参数,这在某些情况下会影响最终结果,因为邻域内节点之间的关联度是不同的,有必要采用不同的卷积核参数来处理不同的节点。GAT的聚合过程表示为:
h ⃗ i ′ = σ ( 1 K ∑ k = 1 K ∑ j ∈ N i α i j k W k h ⃗ j ) ( 6 ) \vec{h}'_i=\sigma(\frac{1}{K}\sum_{k=1}^{K}\sum_{j\in\mathscr{N}_i}\alpha_{ij}^kW^k\vec{h}_j) \qquad(6) h i=σ(K1k=1KjNiαijkWkh j)(6)

α i j k W k h ⃗ j \alpha_{ij}^kW^k\vec{h}_j αijkWkh j表示注意力机制。 W W W 为权重矩阵, { α i j k } \{\alpha_{ij}^k\} {αijk}为一组注意力机制系数,是一个单一的前向传播神经网络。此外,注意力机制还采用了 “LeakyReLU”非线性激活函数,该函数对负输入值具有较小的负线性斜率[^96]。
在定义了 GAT 的聚合过程后,Veličković 等人[^95] 利用 Cora、CiteSeer 和 PubMed 数据集评估了 GAT 的功效,实验结果证明了其分类能力。

4.2.4 分区图卷积(PGC)

在分区图卷积(Partition Graph Convolution,PGC)中,卷积过程被视为采样和权重函数。Yan等人[^97] 提出一种获得采样函数核权重函数的方案。采样函数在领域内选择采样节点,关键是要确定邻域,也就是采样区域。权重函数将邻域内的不同节点分为K组,同一组内共享卷积核参数,不跨组共享,这就减少了分享范围的大小,提高了最终准确率,文中定义了三种不同的分类方案:
第一种分类方案称为单标记(unilabeling),与GNN相同,将所有节点归为一组;第二种方案称为距离分类(distance classification),根据顺序对节点进行分类,中心元素为0阶,相邻元素为1阶,依此类推;最后一种方案为空间配置(spatial configuration),专门用于骨骼动作识别,方案定义了一个参考距离,根据的参考距离对不同的节点进行分类。
定义完两个函数,卷积函数可以表示为:
f o u t ( v i ) = ∑ v j ∈ B ( v i ) 1 Z i ( v j ) f i n ( v j ) ⋅ W ( l i ( v j ) ) f_{out}(v_i)=\sum_{v_j\in B(v_i)}\frac{1}{Z_i(v_j)}f_{in}(v_j)\cdot W(l_i(v_j)) fout(vi)=vjB(vi)Zi(vj)1fin(vj)W(li(vj))
v j ∈ B ( v i ) v_j\in B(v_i) vjB(vi)表示采样函数,以不同的顺序从节点 v i v_i vi的距离-1邻居集 B ( v i ) B(v_i) B(vi)中进行采样。 Z i ( v j ) Z_i(v_j) Zi(vj)是归一化系数, W ( ⋅ ) W(\cdot) W()是权重函数。与采用了均值采样的GraphSAGE相比,PGC因为定义了一个采样函数而对不同的情况更通用。

4.2.5 现有空域卷积方案总结

基于空域卷积策略的现有研究总结见原论文 表格4 ,比较了现有研究的任务、输入参数、输入数据、卷积层数、性能和时间复杂度。

五、GNN在物联网中的应用 GNN Application in Internet of Things (IoT)

5.1 概述 Overview

由于 GNN 具有分析非欧几里得空间数据的能力,而物联网(IoT)数据是高度动态和多维的,因此利用 GNN 协助物联网系统进行数据分析具有一定的潜力。
在IoT系统中,传感器收集与各种事物相关的数据,包括天气、位置和温度,为了获得准确的数据分析结果,现有研究通常在深度学习模型中涉及多个数据源,而数据源也通常被认为是学习模型训练过程中的关键因素。然而由于数据源的多样性、数据的动态性以及不同数据元素之间复杂的关系,很难像欧氏空间中的一样对数据进行组织和处理。传统深度学习模型(CNN、RNN等)无法对非欧氏空间数据进行分析并获得准确结果,此外,因为IoT系统中接入越来越多的设备,系统越来越动态化,IoT数据也变得越来越复杂。为了解决复杂的IoT数据,GNN模型出于其分析非欧氏空间数据的优秀能力,可以在一些IoT系统中用于分析数据。已经有一些将GNN应用在IoT系统上的研究。

回顾几个典型的IoT场景,均采用GNN辅助数据分析过程。

5.2 GNN用于交通流量预测 GNN in Transportation Traffic Prediction

交通系统中流量预测的目标是利用历史流量数据和道路拓扑结构来预测交通速度、流量和吞吐量,从而为缓解交通拥堵提供决策[^112-114] 。精准预测结果可以帮助司机选择最优路径,并减少交通网络的占用。
例如,[^115] 中提出一种基于GNN的方法预测交通系统中的交通流量,研究侧重于实时交通数据,即时间序列数据。文中首先定义交通数据 V t ∈ R n × c V_t\in\mathbb{R}^{n\times c} VtRn×c,n为节点数,c为通道数,对于每个节点n来说,c是一个c维向量,代表了特定时间 t 时的特征,可以是区域内的交通流量、速度和拥堵程度的数值。当c(维度)为1时,模型只考虑交通的一个特征。接着,文中将流量预测过程正规化,只考虑了一个节点的情况。此外,输入是一维向量,表明只考虑了时域。因此,由于只考虑了一个节点(一个区域),模型中不涉及空间信息。随后,将所有节点(时序上的)排列成一个数组(一维向量),并利用全连接层分析数据。
一些类似的研究考虑了交通的不同特征,如交通流 [^116] 、交通速度 [^117] 和天气 [^118] 等。

同样,Ma等人[^119] 提出一种图CNN,用于预测交通网络中的交通拥堵情况。文中提出一种时空矩阵(spatial-temporal matrix),用于将交通网络中多个位置的时间序列数据当作图片(image),这一方案在时域和空间域运用了两个卷积运算。因此模型涉及多个节点和复杂情况,将图数据转换为图像,并应用两个卷积操作,而不是直接在图数据集上应用图卷积,这会使得不同节点之间关系的影响在预测结果中不能体现出来

为了克服这一问题,Wang等人[^120] 提出一种基于网格(lattice-based)的数据表示方法,并在基于网格的图像中直接使用卷积操作。然而,这种方法也存在一些局限性:首先,交通数据包含地理信息,但基于网格的图像无法嵌入相关地理信息;此外,由于基于网格的方案将不同节点视为像素,因此只考虑了相连邻居的影响。现实世界场景中,一个地点的交通状况不只会受到邻近交通状况的影响,也会受到远离该地区的交通状况的影响。

为克服前述问题,Yu等人[^121] 提出一种基于GNN的方案,创建了表示交通状况的图。文中利用节点表示监测站,利用权重表示监测站之间的不同特征,这样就创建了一个综合图来表示不规则的交通网络。
创建图时,用到高斯核来构造加权邻接矩阵W。采用欧氏距离度量,定义了阈值λ,如果欧氏距离比阈值λ大,则关系特征可表示为“0”;否则,利用关系特征参数和高斯核函数得出结果。

有一些侧重于提高[^121] 性能的研究。例如[^122] 研究一种多图卷积网络,来优化距离计算;[^123] 研究了一种利用可调整的相邻矩阵来处理不同交通状况的图波网(Graph WaveNet);[^124] 设计了一种基于注意力的空间-时间(spatial-temporal)图卷积网络,它能适应不同的交通状况。

5.3 GNN用于电能预测 GNN in Electrical Energy Prediction

智能电网是一种基于能源的非典型物联网系统,它采用物联网设备(传感器、执行器等)来收集输配电系统的海量数据。基于数据分析,智能电网系统可以高效、智能地运行。电网可以建模为图结构,其中与不同节点相关的采集数据对应不同地理位置,此外,电网中的数据高度动态。有一些研究利用GNN来辅助数据分析过程。

Owerko 等人[^125] 提出了一种基于 GNN 的预测方案来防止停电。由于 GNN 可以处理高度动态的数据(如图数据),文中不仅考虑了电网的历史数据,还考虑了天气状况、地理位置和海拔高度。将天气、地理位置、海拔和电力使用数据形式化为一个无向图,在使用无池化的 GNN 时,最佳评估结果的预测误差率为 1.04%。
Khodayar 和 Wang [^126] 也提出了一种基于 GNN 的短期风级预测方案,以提高风力发电的输出功率。由于风的随机和及时变化特性,风速预测仍然是一个具有挑战性的问题。文中提出了一种图深度学习模型来捕捉风力涡轮机附近风的时空特征。图的每个节点都对应一个风场,并使用谱图卷积的局部一阶近似来获取特征值。评估结果表明,在均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)性能指标方面,该方案优于作者考虑到的其他预测方案,如前馈神经网络和非线性自回归神经网络。

Khodayar 等人[^127] 采用 GNN 模型预测太阳辐照度,以提高光伏系统的发电量。采用了深度生成模型来捕捉图中连续相邻节点的概率密度。为了降低复杂性,采用可扩展的生成优化算法来辅助概率密度的捕获过程。此外,利用概率密度生成卷积图自动编码器(convolutional graph autoencoder,CGAE),用于预测太阳辐照度。通过使用美国北部各州的真实数据,评估结果证实,所研究的方案在可靠性、清晰度和连续排列的概率分数方面性能最佳。

5.4 GNN用于工业物联网 GNN in Industrial IoT

工业物联网(IIoT)涉及多个领域,如制造业、运输和配送以及原材料的开采和提炼,连接着大量的物联网设备,这些设备会产生海量数据。基于数据分析,IIoT将依靠数据收集和分析实现自动化和智能化。从网络物理系统的角度来看,IIoT 系统由网络子系统、控制子系统和计算子系统组成。由于IIoT系统可能产生海量数据,而计算资源通常有限,因此如何优化网络、控制和计算子系统的性能是一个关键问题[^128] 。

利用机器学习来优化物联网系统中的资源分配问题已有许多研究成果[^11, 129-132] 。大多数研究只关注欧几里得空间数据集,没有考虑系统拓扑结构和其他相关特征。有的研究一直在利用GNNs的新发展来协助资源管理。
例如,Liu 等人[^133] 提出了一种基于离散时间马尔可夫决策过程 (discretetime Markov decision process,DTMDP) 的 Dyna-Q (DDQ) 方法。由于物联网系统中的服务需求是高度动态的,网络功能虚拟技术受到越来越多的关注。鉴于虚拟环境中的计算资源有限,设计高效的调度算法十分必要。为此,提出的 DDQ 利用 GNN 预测虚拟网络功能实例(VNFI)的资源需求,以便在虚拟服务链上动态重新配置服务调度,从而提高资源利用率。

Kim 等人[^134] 为IIoT网络提出了一种基于 GNN 的自主运行控制方案,利用 GNN 根据关系和安全要求分析不同设备的行为,并提供自主控制以确保访问和安全。
从系统角度看,Zhang 等人[^135] 提出了一种物联网图神经网络建模(GNNM-IoT)方案,利用 GNNs模拟IoT网络系统。通过利用 GNN,所提出的模拟器具有分析大规模嵌入式传感器的不同领域之间隐藏逻辑关系的突出能力。利用所提出的 GNNM-IoT 生成复杂的非线性数据集,取得了比长短期记忆(LSTM)和自回归集成移动平均(Autoregressive Integrated Moving Average,ARIMA)方案更好的结果。
Protogerou 等人[^136] 提出了一种基于 GNN 的多代理系统,用于检测针对网络的攻击。为了提高性能,将物联网设备、软件定义(software-defined)网络转发器和雾节点(fog nodes)等活动网络节点形式化为一个图,以生成高维数据输入。所提出的 GNN 模型能够准确检测异常情况。通过模拟各种正常和异常数据包分布的网络流,评估所提出的 GNN 对恶意软件攻击的响应。

六、图神经网络的限制 Limitations of Graph Neural Networks

在普适性和计算消耗方面的局限性

6.1 GNN的普适性 Universality of GNN

如果机器学习模型能适应任何输入和情况,我们就认为该模型具有图灵普适性(Turing Universality)[^137] 。然而,没有一种机器学习模型具有图灵普适性(GNN与图灵普适性)。与 CNN 类似,GNN 的普遍性也是其局限之一。只要满足一些充分条件,GNN 就能以图灵机的形式对任何输入函数进行运算,而不受网络结构的限制 [^138] 。通过建立GNN与经典分布式计算模型之间的图灵等价关系(Turing equivalence),可以总结出充分条件:

  1. 足够的层深度
  2. 足够的卷积层广度
  3. 独立节点
  4. 每层的精确表达式

然而在某些情况下,不可能获得模型的精确数学表达式。此外,增加模型层数的同时会增加计算的复杂性。
物理设备的计算能力限制了模型的层数。因此,许多研究工作利用矩阵逼近,而不是获取精确表达式[^137] 。因此,如何在降低计算复杂度的同时获得模型的精确数学表达式是一个重要而具有挑战性的问题
此外,GNN 的灵活性、传导性和可扩展性还较低 [^140] 。

6.2 GNN的计算消耗 Computing Overhead of GNN

由于深度和广度有限,GNN 无法显示其图灵普适性,而且计算复杂度较高。因此,当它应用于一些特定的数据集时,无法获得准确的结果。在这种情况下,优化 GNN 仍然是一个悬而未决的问题。
与此相关,Liet 等人[^141] 提出了一种基于学习的方法,该方法基于近似算法(approximation algorithms)启发式求解器(heuristic solvers),以降低计算复杂度。利用训练好的图卷积网络来估计特定顶点是否有最优解的可能性,这样GNN 可以显著提高遍历图中所有顶点的搜索速度,然后采用树形搜索(tree search)遍历图中的所有顶点。所提出的方法可以提高大型图的搜索速度。

七、终评 Final Remarks

由于数据集的复杂性越来越高,如何处理高动态、高维度的数据是机器学习模型面临的一个关键问题。本研究回顾了 GNN 的原理和现有研究工作。

  1. 首先介绍了将训练数据从欧几里得空间数据扩展到非欧几里得空间数据的动机。
  2. 然后介绍了处理非欧几里得空间数据的两种不同策略:谱域和空间卷积策略。对现有研究进行了调查,并根据各自的卷积策略对这些研究进行了分类。
  3. 接下来回顾了将 GNN 应用于新兴物联网系统的现有研究,包括车辆流量预测、电能预测和 IIoT 系统中的资源管理。
  4. 最后讨论了 GNN 在普遍性和计算开销方面的一些局限性。

文中表格及参考文献见 原论文

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

torch_M

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值