图神经网络(Graph Neural Networks) 原理与代码实例讲解

图神经网络(Graph Neural Networks) - 原理与代码实例讲解

1.背景介绍

在现代数据科学和机器学习领域,图数据结构的应用越来越广泛。图神经网络(Graph Neural Networks, GNNs)作为一种新兴的深度学习模型,能够有效地处理和分析图结构数据。图数据在社交网络、生物信息学、推荐系统等领域有着广泛的应用。传统的神经网络在处理图数据时存在局限性,而GNNs通过引入图结构信息,能够更好地捕捉节点之间的关系和图的全局特性。

2.核心概念与联系

2.1 图的基本概念

在深入了解GNNs之前,我们需要先掌握一些图的基本概念:

  • 节点(Node):图中的基本单位,表示实体。
  • 边(Edge):连接两个节点的线,表示节点之间的关系。
  • 邻居(Neighbor):与某个节点直接相连的节点。
  • 度(Degree):与某个节点相连的边的数量。

2.2 图神经网络的基本概念

图神经网络是一类能够在图结构数据上进行学习的神经网络模型。其核心思想是通过消息传递机制(Message Passing Mechanism)在图的节点之间传递信息,从而更新节点的表示(Embedding)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值