plt.annotate函数案例一则

观察:plt.legend & plt.annotate两个函数的用法;持续更新中

import numpy as np
import matplotlib.pyplot as plt

# generate different normal distributions
x1 = np.random.normal(30, 3, 100)
x2 = np.random.normal(20, 2, 100)
x3 = np.random.normal(10, 3, 100)

# plot them
plt.figure(figsize=(12,8))
plt.plot(x1, label='plot')
plt.plot(x2, label='2nd plot')
plt.plot(x3, label='last plot')

# generate a legend box
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
       ncol=3, mode="expand", borderaxespad=0.)

# annotate an important value
plt.annotate("Important value", (55,20), xycoords='data',
             xytext=(5, 38), 
             arrowprops=dict(arrowstyle='->')) 
plt.show()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值