用git下载hugging face上的大模型,以Qwen1.5-7B为例

1. 首先找到模型的主页,点击clone repository

2、注意下载需要科学上网,需要在git客户端里配置好vpn的端口;并且要安装好git lfs(用于下载大文件);

有关如何安装git-lfs,可以看这篇教程git-lfs安装方法,非常简单。

  第三行命令GIT LFS SKIP SMUDGE=1的意思是跳过大文件,不进行下载。

3、开始下载后是没有进度显示的,耐心等待即可。

4、显示done即下载完成
### Qwen2-7B-Instruct 大模型使用教程 #### 安装环境准备 为了顺利运行Qwen2-VL-7B-Instruct大模型,需先准备好相应的开发环境。推荐采用Anaconda管理Python虚拟环境并安装必要的依赖库[^1]。 ```bash conda create -n qwen_env python=3.9 conda activate qwen_env pip install transformers datasets torch sentencepiece accelerate ``` #### 下载预训练模型 有两种主要途径来获取此模型文件: - **通过Hugging Face平台**:可以直接利用`transformers`库中的API加载远程权重。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", device_map="auto", trust_remote_code=True) ``` - **Git LFS克隆仓库**:对于希望离线部署的情况,则可以通过命令行工具git-lfs从指定地址拉取资源[^2]。 ```bash git lfs clone https://www.modelscope.cn/qwen/Qwen2-VL-7B-Instruct.git cd Qwen2-VL-7B-Instruct ``` #### 配置微调参数 当计划对该基础架构做进一步优化调整时,可参照配置样设置具体的超参选项[^3]。 ```yaml model: model_name_or_path: "/data/model/qwen2-vl-7b-instruct" adapter_name_or_path: "/data/model/sft/qwen2-vl-7b-instruct-sft/checkpoint-14" template: "qwen2_vl" finetuning_type: "lora" export: export_dir: "/data/model/merge/qwen2-vl-7b-instruct-sft" export_size: 2 export_device: "gpu" export_legacy_format: False ``` #### 应用场景实 基于上述准备工作完成后,即可着手开展诸如图像描述、视频理解以及文本生成等多种跨媒体任务的研究工作。具体实现逻辑取决于业务需求和个人创意发挥空间较大,在官方文档中有更多详细的指导说明可供查阅。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值