05_专家的快速入门、加载MNIST数据集、数据集切分和混淆、定义类的方式构建模型、选择优化器和损失函数、训练模型和测试模型准确率

https://tensorflow.google.cn/tutorials/quickstart/advanced

导入TensorFlow到你的程序中:

import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model

加载和准备MNIST数据集

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]

使用 tf.data 来将数据集切分为 batch 以及混淆数据集:

train_ds = tf.data.Dataset.from_tensor_slices(
    (x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

使用 Keras 模型子类化(model subclassing) API构建tf.keras模型:

class MyModel(Model):
  def __init__(self):
    super(MyModel, self).__init__()
    self.conv1 = Conv2D(32, 3, activation='relu')
    self.flatten = Flatten()
    self.d1 = Dense(128, activation='relu')
    self.d2 = Dense(10, activation='softmax')

  def call(self, x):
    x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    return self.d2(x)

model = MyModel()

为训练选择优化器与损失函数:

loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()

选择衡量指标来度量模型的损失值(loss)和准确率(accuracy)。这些指标在epoch上累积值,然后打印出整理结果。

train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

使用tf.GradientTape来训练模型:

@tf.function
def train_step(images, labels):
    with tf.GradientTape() as tape:
        predictions = model(images)
        loss = loss_object(labels, predictions)
    gradients = tape.gradient(loss,model.trainable_variables)
    optimizer.apply_gradients(zip(gradients,model.trainable_variables))
    
    train_loss(loss)
    train_accuracy(labels,predictions)

测试模型:

@tf.function
def test_step(images, labels):
  predictions = model(images)
  t_loss = loss_object(labels, predictions)

  test_loss(t_loss)
  test_accuracy(labels, predictions)

EPOCHS = 5
for epoch in range(EPOCHS):
    # 在下一个epoch开始是,重置评估指标
    train_loss.reset_states()
    train_accuracy.reset_states()
    test_loss.reset_states()
    test_accuracy.reset_states()

    for images, labels in train_ds:
        train_step(images,labels)

    for test_images,test_labels in test_ds:
        test_step(test_images,test_labels)

    template = "Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}"
    print(template.format(
            epoch + 1,
            train_loss.result(),
            train_accuracy.result() * 100,
            test_loss.result(),
            test_accuracy.result() * 100))

输出结果:

WARNING:tensorflow:Layer my_model is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2.  The layer has dtype float32 because it's dtype defaults to floatx.
If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2.
To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.
Epoch 1, Loss: 0.13633669912815094, Accuracy: 95.92000579833984, Test Loss: 0.054682306945323944, Test Accuracy: 98.19999694824219
Epoch 2, Loss: 0.041911669075489044, Accuracy: 98.70333099365234, Test Loss: 0.04665009677410126, Test Accuracy: 98.4000015258789
Epoch 3, Loss: 0.021748166531324387, Accuracy: 99.31666564941406, Test Loss: 0.05017175152897835, Test Accuracy: 98.36000061035156
Epoch 4, Loss: 0.01320651639252901, Accuracy: 99.55166625976562, Test Loss: 0.058168746531009674, Test Accuracy: 98.30999755859375
Epoch 5, Loss: 0.008145572617650032, Accuracy: 99.7316665649414, Test Loss: 0.06632857024669647, Test Accuracy: 98.30999755859375
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我将为您提供一个LeNet模型的实现示例,并在Mnist数据集和Fashion Mnist数据集上进行训练和验证。 LeNet模型的结构如下所示: ``` LeNet( (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1)) (pool1): AvgPool2d(kernel_size=2, stride=2, padding=0) (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) (pool2): AvgPool2d(kernel_size=2, stride=2, padding=0) (fc1): Linear(in_features=400, out_features=120, bias=True) (fc2): Linear(in_features=120, out_features=84, bias=True) (fc3): Linear(in_features=84, out_features=10, bias=True) ) ``` 其中,conv1和conv2分别为两个卷积层,pool1和pool2分别为两个池化层,fc1、fc2和fc3分别为三个全连接层。 首先,我们需要导入必要的库和Mnist数据集: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 设置随机种子,保证实验结果的可重复性 torch.manual_seed(2021) # 定义数据预处理方法 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # Mnist数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) # Fashion Mnist数据集 # trainset = torchvision.datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform) # testset = torchvision.datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform) # 定义数据 trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2) ``` 然后,我们可以定义LeNet模型并进行训练和验证: ```python # 定义LeNet模型 class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5) self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(6, 16, kernel_size=5) self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 定义训练函数 def train(net, criterion, optimizer, trainloader, num_epochs): for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if (i+1) % 100 == 0: print('[Epoch %d, Batch %d] loss: %.3f' % (epoch+1, i+1, running_loss/100)) running_loss = 0.0 # 定义测试函数 def test(net, dataloader): correct = 0 total = 0 with torch.no_grad(): for data in dataloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print('Accuracy on test set: %.2f%%' % (accuracy)) # 实例化LeNet模型损失函数优化 net = LeNet() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) # 在Mnist数据集上进行训练和验证 num_epochs = 10 train(net, criterion, optimizer, trainloader, num_epochs) test(net, testloader) # 在Fashion Mnist数据集上进行训练和验证 # num_epochs = 10 # train(net, criterion, optimizer, trainloader, num_epochs) # test(net, testloader) ``` 最后,我们可以得到在Mnist数据集和Fashion Mnist数据集上的准确率。如果您想要进一步提高模型的表现,可以考虑调节超参数或使用其他更复杂的网络模型

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值