理解CNN参数及PyTorch实例,卷积核kernel,层数Channels,步长Stride,填充Padding,池化Pooling,PyTorch中的相关方法,MNIST例子

1.34.理解CNN参数及PyTorch实例
1.34.1.卷积核kernel
1.34.2.层数Channels
1.34.3.步长Stride
1.34.4.填充Padding
1.34.5.池化Pooling
1.34.6.PyTorch中的相关方法
1.34.7.MNIST例子

1.34.理解CNN参数及PyTorch实例

参考地址:http://guileen.github.io/2019/12/24/understanding-cnn/

在实际的项目中,会发现CNN有多个参数需要调整,本文主要目的在于理清各个参数的作用。

1.34.1.卷积核kernel

Kernel,卷积核,有时也称为filter。在迭代过程中,学习的结果就保存在kernel里面。深度学习,学习的就是一个权重。kernel的尺寸越小,计算量越小,一般选择3x3,更小就没有意义了。
在这里插入图片描述
结果是对卷积核与一小块输入数据的点积。

1.34.2.层数Channels

在这里插入图片描述
所有位置的点积构成一个激活层。
在这里插入图片描述
如果我们有6个卷积核,我们就会有6个激活层。

1.34.3.步长Stride

在这里插入图片描述
上图是每次向右移动一格,一行结束向下移动一行,所以stride是1x1,如果是移动2格2行则是2x2。

1.34.4.填充Padding

Padding的作用是为了获取图片上下左右边缘的特征。
在这里插入图片描述

1.34.5.池化Pooling

卷积层为了提取特征,但是卷积层提取完特征后特征图层依然很大。为了减少计算量,我们可以用padding的方式来减小特征图层。Pooling的方法有MaxPooling核AveragePooling。
在这里插入图片描述

1.34.6.PyTorch中的相关方法

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode=’zeros’)
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
stride默认与kernel_size相等
torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
Tensor.view(*shape) -> Tensor
用于将卷积层展开为全连接层

x = torch.randn(4, 4)
x.size()

“””
输出结果:
torch.Size([4, 4])
“””

y = x.view(16)
y.size()
“””
输出结果:
torch.Size([16])
“””

z = x.view(-1, 8)   # the size -1 is inferred from other dimensions
z.size()
“””
输出结果:
torch.Size([2, 8])
“””

1.34.7.MNIST例子

MNIST 数据集的输入是 1x28x28 的数据集。在实际开发中必须要清楚每一次的输出结构。

我们第一层使用 5x5的卷积核,步长为1,padding为0,28-5+1 = 24,那么输出就是 24x24。计算方法是 (input_size - kernel_size)/ stride + 1。
我们第二层使用 2x2的MaxPool,那么输出为 12x12。
第三层再使用5x5,卷积核,输出则为 12-5+1,即 8x8。
再使用 2x2 MaxPool,输出则为 4x4。
在这里插入图片描述

# -*- coding: UTF-8 -*-

import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    """ConvNet -> Max_Pool -> RELU -> ConvNet -> Max_Pool -> RELU -> FC -> RELU -> FC -> SOFTMAX"""
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, 5, 1)
        self.conv2 = nn.Conv2d(10, 20, 5, 1)
        self.fc1 = nn.Linear(4*4*20, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*20)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
  • 5
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值