Flink
文章平均质量分 87
Flink
涂作权的博客
To do what I want to do!
展开
-
1.34.FlinkX\工作原理\快速起步|1.35.Flink资料
1.34.FlinkX1.34.1.什么是FlinkX1.34.2.工作原理1.34.3.快速起步1.34.3.1.运行模式1.34.3.2.执行环境1.34.3.3.打包1.34.3.4.启动1.34.3.4.1.命令行参数选项1.34.3.4.2.启动数据同步1.34.4.数据同步任务模板1.34.4.1.setting1.34.4.1.1.speed1.34.4.1.2.errorLimit1.34.4.1.3.dirty1.34.4.1.4.restore1.34.4原创 2022-07-05 23:58:51 · 383 阅读 · 0 评论 -
1.33.Flink CDC案例\官方介绍\Table/SQL API的语法\DataStream API的用法\Building from source\Flink CDC案例\案例1/2/3
1.33.Flink CDC案例1.33.1.官方介绍1.33.1.1.Table/SQL API的语法1.33.1.2.DataStream API的用法1.33.1.3.Building from source1.33.2.Flink CDC案例1.33.2.1.pom.xml定义1.33.2.2.案例11.33.2.3.案例21.33.2.4.案例3Flink CDC连接器是一组用于Apache Flink的source connectors,使用更改数据捕获(CDC)从不同的数据库原创 2022-07-05 23:47:35 · 1434 阅读 · 0 评论 -
1.31.Flink自定义rocketmq(source/sink)+自定义redis source和sink
1.31.Flink自定义rocketmq(source/sink)+自定义redis+自定义1.31.1.工程结构1.31.2.定义pom.xml文件1.31.3.log4j2.properties1.31.4.logback.xml1.31.5.cache.properties1.31.6.project-config.properties1.31.7.IssueAcceptSimpleProducer.java1.31.8.Consumer.java1.31.9.DefaultTop原创 2022-07-05 23:33:30 · 4238 阅读 · 0 评论 -
1.30.Flink SQL案例将Kafka数据写入hive
1.30.Flink SQL案例将Kafka数据写入hive1.30.1.1.场景,环境,配置准备1.30.1.2.案例代码1.30.1.2.1.编写pom.xml文件1.30.1.2.2.Maven工程resources下编写配置文件log4j2.properties1.30.1.2.3.Maven工程resources下编写配置文件logback.xml1.30.1.2.4.Maven工程resources下编写配置文件project-config-test.properties1.30.原创 2022-07-05 20:27:46 · 3073 阅读 · 1 评论 -
1.27.Flink实时性、容错机制、窗口等介绍\内幕\作业调度\JobManager数据结构\1.29.Flink和Hive整合\支持的Hive版本\使用 Flink 提供的 Hive jar
1.27.Flink实时性、容错机制、窗口等介绍1.27.1.问题导读1.28.内幕1.28.1.作业调度1.28.1.1.调度1.28.1.2.JobManager数据结构1.29.Flink和Hive整合1.29.1.概述1.29.2.支持的Hive版本1.29.3.依赖项1.29.3.1.使用 Flink 提供的 Hive jar1.29.3.2.用户定义的依赖项1.29.3.3.Maven依赖1.29.3.4.连接到Hive1.为什么flink实时性好?2.flink通过原创 2022-07-05 12:40:27 · 333 阅读 · 0 评论 -
1.22.FLINK Watermark\Flink窗口(Window)\watermark有什么用?\如何使用Watermarks处理乱序的数据流?\机制及实例详解\生成方式\代码实例
1.22.揭开Watermark的神秘面纱1.22.1.问题导读1.22.2.流数据异常该怎么办:1.22.2.1.Flink窗口(Window)1.22.2.2.事件时间1.22.3.watermark有什么用?1.22.4.如何使用Watermarks处理乱序的数据流?1.23.Watermark机制及实例详解1.24.Watermark生成方式1.25.Watermark代码实例1.26.Watermark的案例以下转自:https://www.aboutyun.com/threa原创 2022-07-05 00:46:42 · 483 阅读 · 0 评论 -
1.21.Flink Slot和并行度(parallelism)\Flink的并行度由什么决定的?\Flink的task是什么?\slot和parallelism
1.21.Flink Slot和并行度(parallelism)1.21.1.Flink的并行度由什么决定的?1.21.2.Flink的task是什么?1.21.3.slot和parallelism1.21.3.1.slot是指taskmanager的并发执行能力1.21.3.2.parallelism是可配置、可指定的1.21.4.slot和parallelism总结Flink运行时主要角色有两个:JobManager和TaskManager,无论是standalone集群,flink on原创 2022-07-05 00:14:00 · 1005 阅读 · 0 评论 -
1.20_Flink的Window全面解析\Keyed Windows\Window Assigners\Tumbling,Sliding,Session,Global,Window Function
1.20.透过窗口看无限数据流----Flink的Window全面解析1.20.1.Quick Start1.20.1.1.是什么?1.20.1.2.如何用?1.20.1.2.1.Keyed Windows1.20.1.2.2.Non-Keyed Windows1.20.1.2.3.简写window操作1.20.2.Window Assigners1.20.2.1.分类1.20.2.2.使用介绍1.20.2.2.1.Tumbling Windows1.20.2.2.2.Sliding原创 2022-07-04 23:57:32 · 580 阅读 · 0 评论 -
1.19.11.SQL客户端、启动SQL客户端、执行SQL查询、环境配置文件、重启策略、自定义函数(User-defined Functions)、构造函数参数、Catalogs、SQL视图
1.19.11.SQL客户端1.19.11.1.入门1.19.11.2.启动SQL客户端命令行界面1.19.11.3.执行SQL查询1.19.11.4.配置1.19.11.5.环境配置文件1.19.11.5.1.重启策略1.19.11.6.依赖1.19.11.7.自定义函数(User-defined Functions)1.19.11.7.1.构造函数参数1.19.11.8.Catalogs1.19.11.9.分离的 SQL 查询1.19.11.10.SQL视图1.19.11.11原创 2022-07-04 20:32:35 · 1458 阅读 · 0 评论 -
1.19.10.Flink SQL工程案例\Flink批式处理\自定义函数\Window窗口计算\将DataSet数据转成Table数据\将Table数据转成DataSet等
1.19.10.Flink SQL工程案例1.19.10.1.编写Pom.xml文件1.19.10.2.java案例1.19.10.3.案例1:Flink批式处理(建表、查询、插入、jdbc connector的使用)1.19.10.4.案例2:StreamTableEnvironment的使用案例+数据模拟+自定义函数及其应用1.19.10.5.案例3:StreamTableEnvironment应用+blink/Flink SQL应用1.19.10.6.案例4:Flink SQL之Strea原创 2022-07-04 12:47:23 · 1766 阅读 · 0 评论 -
1.19.9.函数、概览、函数引用、精确函数引用、模糊函数引用、函数解析顺序、精确函数引用、模糊函数引用、自定义函数、准备工作、概述、开发指南、函数类、求值方法、标量函数、表值函数、聚合函数
1.19.9.函数1.19.9.1.概览1.19.9.1.1.函数引用1.19.9.1.2.精确函数引用1.19.9.1.3.模糊函数引用1.19.9.1.4.函数解析顺序1.19.9.1.5.精确函数引用1.19.9.1.6.模糊函数引用1.19.9.2.自定义函数1.19.9.2.1.准备工作1.19.9.2.2.概述1.19.9.2.3.开发指南1.19.9.2.3.1.函数类1.19.9.2.3.2.求值方法1.19.9.2.4.标量函数1.19.9.2.5.表值函数原创 2022-07-03 00:32:31 · 525 阅读 · 0 评论 -
1.19.7.Table API、SQL、数据类型、保留关键字、查询语句、指定查询、执行查询、语法、操作符、无排名输出优化、去重、分组窗口、时间属性、选择分组窗口的开始和结束时间戳、模式匹配
1.19.7.Table API1.19.8.SQL1.19.8.1.概述1.19.8.1.1.SQL1.19.8.1.2.数据类型1.19.8.1.3.保留关键字1.19.8.2.查询语句1.19.8.2.1.指定查询1.19.8.2.2.执行查询1.19.8.2.3.语法1.19.8.2.4.操作符1.19.8.2.5.无排名输出优化1.19.8.2.6.去重1.19.8.2.7.分组窗口1.19.8.2.7.1.时间属性1.19.8.2.7.2.选择分组窗口的开始和结束时原创 2022-07-02 23:09:35 · 485 阅读 · 0 评论 -
1.19.6.数据类型、数据类型列表、结构化的数据类型、其他数据类型、数据类型注解
1.19.6.数据类型1.19.6.1.数据类型1.19.6.1.1.Table API的数据类型1.19.6.1.1.1.物理提示1.19.6.2.Planner兼容性1.19.6.3.旧的Planner1.19.6.4.新的 Blink Planner1.19.6.5.局限性1.19.6.6.数据类型列表1.19.6.6.1.字符串1.19.6.6.1.1.CHAR1.19.6.6.1.2.VARCHAR / STRING1.19.6.6.2.二进制字符串1.19.6.6.2.原创 2022-07-02 14:16:02 · 587 阅读 · 0 评论 -
1.19.5.4.流上的Join、常规Join、时间区间Join、时态表Join、基于处理时间的时态Join、时态表函数Join、用法
Join 在批数据处理中是比较常见且广为人知的运算,一般用于连接两张关系表。然而在动态表中 Join 的语义会难以理解甚至让人困惑。因而,Flink 提供了几种基于 Table API 和 SQL 的 Join 方法。欲获取更多关于 Join 语法的细节,请参考 Table API 和 SQL 中的 Join 章节。常规 Join 是最常用的 Join 用法。在常规 Join 中,任何新记录或对 Join 两侧表的任何更改都是可见的,并会影响最终整个 Join 的结果。例如,如果 Join 左侧插入了一条新原创 2022-06-27 12:37:49 · 774 阅读 · 0 评论 -
1.19.5.3.时态表、关联一张版本表、关联一张普通表、时态表、声明版本表、声明版本视图、声明普通表、时态表函数等
1.19.5.3.时态表(Temporal Tables)1.19.5.3.1.设计初衷1.19.5.3.1.1.关联一张版本表1.19.5.3.1.2.关联一张普通表1.19.5.3.2.时态表1.19.5.3.2.1.声明版本表1.19.5.3.2.2.声明版本视图1.19.5.3.2.3.声明普通表1.19.5.3.3.时态表函数1.19.5.3.3.1.定义时态表函数时态表(Temporal Table)是一张随时间变化的表 – 在Flink中称为动态表,时态表中的每条记录都关联了原创 2022-06-27 00:51:32 · 362 阅读 · 1 评论 -
1.19.5.2.时间属性、时间属性介绍、事件时间、在DDL中定义、在DataStream 到Table转换时定义、在DataStream 到Table 转换时定义、使用TableSource定义
1.19.5.2.时间属性1.19.5.2.1.时间属性介绍1.19.5.2.2.事件时间1.19.5.2.2.1.在DDL中定义1.19.5.2.2.2.在DataStream 到 Table 转换时定义1.19.5.2.2.3.使用TableSource定义Flink可以基于几种不同的 “时间”概念来处理数据。处理时间 指的是执行具体操作时的机器时间(也称作”挂钟时间”)事件时间 指的是数据本身携带的时间。这个时间是在事件产生时的时间。摄入时间 指的是数据进入Flink 的时间;在原创 2022-06-27 00:37:21 · 468 阅读 · 0 评论 -
1.18.5.流式概念、动态表(Dynamic Table)、DataStream上的关系查询、动态表 & 连续查询(Continuous Query)、在流上定义表、处理时间
1.18.5.流式概念1.18.5.1.动态表(Dynamic Table)1.18.5.1.1.DataStream上的关系查询1.18.5.1.2.动态表 & 连续查询(Continuous Query)1.18.5.1.3.在流上定义表1.18.5.1.4.连续查询1.18.5.1.5.处理时间1.18.5.1.5.1.在创建表的DDL中定义1.18.5.1.5.2.在DataStream到Table转换时定义1.18.5.1.5.3.使用TableSource定义1.18原创 2021-07-26 22:28:39 · 642 阅读 · 0 评论 -
1.18.3.Flink Catalog介绍、Catalog 定义、Catalog 的实现、Catalog 使用举例
1.18.3.Flink Catalog介绍1.18.3.1.引言1.18.3.2.Catalog 定义1.18.3.3.Catalog 的实现1.18.3.4.Catalog 使用举例1.18.3.Flink Catalog介绍1.18.3.1.引言以下转自:http://legendtkl.com/2020/07/26/flink-catalog/这篇文章我们介绍了一下 Flink 的 Catalog,基于 Flink 1.11,熟悉 Flink 或者 Spark 等大数据引擎的同学应该转载 2021-07-26 21:59:58 · 7224 阅读 · 1 评论 -
1.18.2.10 解释表:Table.explain、物理执行计划等
1.18.2.10.解释表Table API 提供了一种机制来解释计算 Table 的逻辑和优化查询计划。 这是通过 Table.explain() 方法或者 StatementSet.explain() 方法来完成的。Table.explain() 返回一个 Table 的计划。StatementSet.explain() 返回多 sink 计划的结果。它返回一个描述三种计划的字符串:关系查询的抽象语法树(the Abstract Syntax Tree),即未优化的逻辑查询计划优化的逻辑查询计原创 2021-07-26 21:28:21 · 350 阅读 · 0 评论 -
1.18.2.9.查询优化、Blink planner、解释表
1.18.2.9.查询优化1.18.2.9.1.Blink planner1.18.2.10.解释表1.18.2.9.查询优化1.18.2.9.1.Blink plannerApache Flink使用并扩展了Apache Calcite来执行复杂的查询优化。 这包括一系列基于规则和成本的优化,例如:基于Apache Calcite的子查询解相关投影剪裁分区剪裁过滤器下推子计划消除重复数据以避免重复计算特殊子查询重写,包括两部分将 IN 和 EXISTS 转换为 lef原创 2021-07-21 22:41:26 · 618 阅读 · 1 评论 -
1.18.2.8与DataStream和DataSet API结合,Scala隐式转换,通过DataSet或DataStream创建视图,将DataStream或DataSet转换成表 等
1.18.2.8.与DataStream和DataSet API结合1.18.2.8.1.Scala隐式转换1.18.2.8.2.通过DataSet或DataStream创建视图1.18.2.8.3.将DataStream或DataSet转换成表1.18.2.8.4.将表转换成DataStream或DataSet1.18.2.8.5.将表转换成DataStream1.18.2.8.5.1.将表转换成DataSet1.18.2.8.6.数据类型到Table Schema的映射1.18.2.8.原创 2021-07-21 22:22:54 · 438 阅读 · 0 评论 -
[白话解析] Flink的Watermark机制
0x00 摘要对于Flink来说,Watermark是个很难绕过去的概念。本文将从整体的思路上来说,运用感性直觉的思考来帮大家梳理Watermark概念。0x01 问题关于Watermark,很容易产生几个问题Flink 流处理应用中,常见的处理需求/应对方案是什么?Watermark究竟应该翻译成水印还是水位线?Watermark本质是什么?Watermark是如何解决问题?下面我们就来简要解答这些问题以给大家一个大致概念,在后文中,会再深入描述。问题1. Flink 流处理应用中常转载 2021-06-19 10:40:08 · 610 阅读 · 0 评论 -
Flink On Yarn模式,为什么使用Flink On Yarn?Session模式、Per-Job模式、关闭yarn的内存检查,由Yarn模式切换回standalone模式时需要注意的点
Flink On Yarn模式原理为什么使用Flink On Yarn?在实际开发中,使用Flink时,更多的使用方式是Flink On Yarn模式,原因如下:-1.Yarn的资源可以按需使用,提高集群的资源利用率-2.Yarn的任务有优先级,根据优先级运行作业-3.基于Yarn调度系统,能够自动化地处理各个角色的 Failover(容错)○ JobManager 进程和 TaskManager 进程都由 Yarn NodeManager 监控○ 如果 JobManager 进程异常退出,转载 2021-05-06 11:03:37 · 2270 阅读 · 0 评论 -
1.18.2.5.Table API&SQL(查询表、Table API、SQL、混用Table API和SQL、输出表、翻译与执行查询、Blink planner、Old planner)等
1.18.2.5.查询表1.18.2.5.1.Table API1.18.2.5.2.SQL1.18.2.5.3.混用Table API和SQL1.18.2.6.输出表1.18.2.7.翻译与执行查询1.18.2.7.1.Blink planner1.18.2.7.2.Old planner1.18.2.5.查询表1.18.2.5.1.Table APITable API 是关于 Scala 和 Java 的集成语言式查询 API。与 SQL 相反,Table API 的查询不是由字符串原创 2021-04-11 15:38:31 · 809 阅读 · 0 评论 -
1.18.2.Table API&SQL(概念与通用API、两种计划器(Planner)的主要区别、创建 TableEnvironment、临时表、永久表、创建表、虚拟表、Connector 等)
1.18.2.概念与通用API1.18.2.1.两种计划器(Planner)的主要区别:1.18.2.2.Table API和SQL程序的结构1.18.2.3.创建 TableEnvironment1.18.2.4.在Catalog中创建表1.18.2.4.1.临时表(Temporary Table)和永久表(Permanent Table)1.18.2.4.1.1.屏蔽(Shadowing)1.18.2.4.2.创建表1.18.2.4.2.1.虚拟表1.18.2.4.2.2.Connec原创 2021-04-11 15:25:47 · 1089 阅读 · 0 评论 -
1.18.Table API & SQL(概念、依赖图、Table程序依赖、扩展依赖)
1.18.Table API & SQL1.18.1.概念1.18.1.1.依赖图1.18.1.2.Table程序依赖1.18.1.3.扩展依赖1.18.Table API & SQL1.18.1.概念Apache Flink 有两种关系型 API 来做流批统一处理:Table API 和 SQL。Table API 是用于 Scala 和 Java 语言的查询API,它可以用一种非常直观的方式来组合使用选取、过滤、join 等关系型算子。Flink SQL 是基于 Apach原创 2021-04-11 15:12:05 · 911 阅读 · 0 评论 -
1.17.Flink 并行度详解(Parallel)、TaskManager与Slot、Operator Level、Execution Environment Level、Client Level等
1.17.Flink 并行度详解(Parallel)1.17.1.TaskManager与Slot1.17.2.TaskManager与Slot1.17.3.并行度(Parallel)1.17.4.并行度(Parallel)的设置1.17.4.1.并行度设置之Operator Level1.17.4.2.并行度设置之Execution Environment Level1.17.4.3.并行度设置之Client Level1.17.4.4.并行度设置之System Level1.17.Fl原创 2021-04-11 15:04:22 · 1258 阅读 · 0 评论 -
1.16.Flink Window和Time详解、TimeWindow的应用、Window聚合分类之全量聚合、全量聚合状态变化过程-求最大值、Time介绍、EventTime和Watermarks等
1.16.Flink Window和Time详解1.16.1.Window(窗口)1.16.2.Window的类型1.16.3.Window类型汇总1.16.4.TimeWindow的应用1.16.5.CountWindow的应用1.16.6.Window聚合分类1.16.7.Window聚合分类之增量聚合1.16.7.1.增量聚合状态变化过程-累加求和1.16.7.2.reduce(reduceFunction)1.16.7.3.aggregate(aggregateFunction)原创 2021-04-11 00:05:12 · 1370 阅读 · 0 评论 -
1.15.Flink state(状态)管理与恢复、什么是state、Keyed State、Operator State、状态容错(生成快照,恢复快照),checkPoint简介,重启策略等
1.15.Flink state(状态)管理与恢复1.15.1.什么是state1.15.2.状态(State)1.15.3.Keyed State1.15.4.Operator State1.15.4.1.Snapshotting Operator State1.15.5.状态容错1.15.6.状态容错-生成快照1.15.7.状态容错–恢复快照1.15.8.checkPoint简介1.15.8.1.Barriers1.15.8.2.Recovery1.15.9.CheckPoint原创 2021-04-10 23:39:18 · 1499 阅读 · 0 评论 -
1.13.、1.14.Flink 支持的DataType和序列化、Flink Broadcast & Accumulators & Counters &Distributed Cache
1.13.Flink 支持的DataType和序列化1.13.1.Flink支持的DataType1.13.2.Flink的序列化1.14.Flink Broadcast & Accumulators & Counters &Distributed Cache1.14.1.DataStreaming中的Broadcast1.14.2.Flink Broadcast(广播变量)1.14.3.Flink Accumulators & Counters1.14.4.F原创 2021-04-10 23:02:54 · 1823 阅读 · 0 评论 -
1.12.Flink Kafka-Connector详解、Consumer消费策略设置、动态加载Topic、Consumers Offset 自动提交、Producer、容错等
1.12.Flink Kafka-Connector详解1.12.1.Kafka Consumer消费策略设置1.12.2.Kafka Consumer的容错1.12.3.动态加载Topic1.12.4.Kafka Consumers Offset 自动提交1.12.5.Kafka Producer1.12.6.Kafka Producer的容错-Kafka 0.9 and 0.101.12.7.Kafka Producer的容错-Kafka 0.111.12.Flink Kafka-Con原创 2021-04-10 22:51:24 · 2534 阅读 · 0 评论 -
1.11.Flink DataSetAPI、DataSet API之Data Sources、DataSet API之Transformations、DataSet Sink部分详解
1.11.Flink DataSetAPI1.11.1.DataSet API之Data Sources1.11.2.DataSet API之Transformations1.11.3.DataSet Sink部分详解1.11.Flink DataSetAPI1.11.1.DataSet API之Data Sources基于文件readTextFile(path)基于集合fromCollection(Collection)1.11.2.DataSet API之Transformat原创 2021-04-10 22:34:24 · 774 阅读 · 0 评论 -
1.10.Flink DataStreamAPI(API的抽象级别、Data Sources、connectors、Source容错性保证、Sink容错性保证、自定义sink、partition等)
1.10.Flink DataStreamAPI1.10.1.Flink API的抽象级别1.10.2.DatSource部分详解1.10.2.1.DataStream API之Data Sources1.10.2.2.DataSources API1.10.2.3.DataStream内置connectors1.10.2.4.Source容错性保证1.10.2.5.Sink容错性保证1.10.2.6.自定义sink1.10.2.7.Table & SQL Connectors1原创 2021-04-10 19:56:45 · 741 阅读 · 0 评论 -
Flink-Table StreamTableEnvironment基础知识
本文转自:https://www.pianshen.com/article/82411282368/StreamTableEnvironment用于流计算场景,流计算的对象是DataStream。相比 TableEnvironment,StreamTableEnvironment 提供了 DataStream 和 Table 之间相互转换的接口,如果用户的程序除了使用 Table API & SQL 编写外,还需要使用到 DataStream API,则需要使用 StreamTableEnviro转载 2021-04-06 12:18:41 · 2144 阅读 · 0 评论 -
[白话解析] Flink的Watermark机制
本文转自:https://www.cnblogs.com/rossiXYZ/p/12286407.html1. 摘要对于Flink来说,Watermark是个很难绕过去的概念。本文将从整体的思路上来说,运用感性直觉的思考来帮大家梳理Watermark概念。2.问题关于Watermark,很容易产生几个问题Flink 流处理应用中,常见的处理需求/应对方案是什么?Watermark究竟应该翻译成水印还是水位线?Watermark本质是什么?Watermark是如何解决问题?下面我们就来简转载 2021-03-16 17:42:37 · 651 阅读 · 0 评论 -
flink报错:Error: Static methods in interface require -target:jvm-1.8 已解决
一、详细报错Error:(55, 92) Static methods in interface require -target:jvm-1.8 .assignTimestampsAndWatermarks(WatermarkStrategy.forBoundedOutOfOrderness[LogEvent](Duration.ofSeconds(2))二、报错原因在flink 1.11版本中使用 WatermarkStrategy 类中的方法时可能会报异常第一种解决办法:按转载 2021-03-15 17:23:13 · 844 阅读 · 1 评论 -
09_Flink入门案例、word-count程序(java和scala版本)、添加依赖、Flink Streaming和Batch的区别 、在集群上执行程序等
1.9.Flink入门案例-wordCount1.9.1.开发工具1.9.2.编写java版本word-count程序1.9.2.1.添加Flink Maven依赖1.9.2.2.编写wordcount的java代码1.9.2.3.数据准备1.9.2.4.执行结果1.9.3.编写scala版本word-count程序1.9.3.1.添加Flink依赖1.9.3.2.编写wordcount的scala程序1.9.4.Flink StreamingWindowWordCount1.9.5.原创 2021-02-04 00:46:57 · 1259 阅读 · 1 评论 -
07/08_flink shell,基本原理及应用场景、特点、架构图、集群解剖、JobManager、TaskManagers、tasks和操作链、Session/job集群、组件介绍等、应用场景
1.7.Flink scala shell代码调试1.7.1.Flink scala shell代码调试语法1.8.Flink基本原理及应用场景1.8.1.Flink特点1.8.2.Flink架构图1.8.2.1.Flink集群的解剖1.8.2.1.1.JobManager1.8.2.1.2.TaskManagers1.8.2.1.3.Tasks and Operator Chains1.8.2.1.4.Task Slots 和 Resources1.8.2.1.5.Flink Appl原创 2021-01-20 01:39:12 · 534 阅读 · 2 评论 -
06_Flink命令行界面、作业管理示例、Savepoints、语法(run、通用配置、yarn-cluster、info、list、stop、cancel、savepoint等)
1.6.Flink命令行界面1.6.1.Deployment targets1.6.2.例子1.6.3.作业管理示例1.6.4.Savepoints1.6.5.语法1.6.Flink命令行界面此篇内容来自:https://ci.apache.org/projects/flink/flink-docs-release-1.11/zh/ops/cli.htmlFlink提供了一个命令行接口(CLI)来运行打包为JAR文件的程序,并控制它们的执行。CLI是任何Flink设置的一部分,可以在本地单节原创 2021-01-20 01:05:57 · 1476 阅读 · 0 评论 -
05_Flink-HA高可用、JobManager HA、JobManager HA配置步骤、Flink Standalone集群HA配置、Flink on yarn集群HA配置等
1.5.Flink-HA高可用1.5.1.JobManager高可用(HA)1.5.2.JobManager HA配置步骤1.5.3.Flink Standalone集群HA配置1.5.3.1.HA集群环境规划1.5.3.2.开始配置1.5.3.3.配置环境变量1.5.3.4.启动1.5.4.Flink on yarn集群HA配置1.5.4.1.HA集群环境规划1.5.4.2.开始配置+启动1.5.4.3.启动flink on yarn,测试HA1.5.4.4.在hadoop4上启动原创 2021-01-20 00:47:04 · 770 阅读 · 0 评论