Spark概述、Spark特点

Spark是一种快速、通用、可扩展的大数据分析引擎,支持内存计算,提高了数据处理速度。它兼容Hadoop生态,提供多种子项目,如SparkSQL、SparkStreaming等,广泛应用于各大互联网公司。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、 Spark概述

1. 什么是Spark(官网:http://spark.apache.org

这里写图片描述
Spark是一种快速、通用、可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目。目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、Spark Streaming、GraphX、MLlib等子项目,Spark是基于内存计算的大数据并行计算框架。Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。Spark得到了众多大数据公司的支持,这些公司包括Hortonworks、IBM、Intel、Cloudera、MapR、Pivotal、百度、阿里、腾讯、京东、携程、优酷土豆。当前百度的Spark已应用于凤巢、大搜索、直达号、百度大数据等业务;阿里利用GraphX构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯Spark集群达到8000台的规模,是当前已知的世界上最大的Spark集群。

2. 为什么要学Spark

中间结果输出:基于MapReduce的计算引擎通常会将中间结果输出到磁盘上,进行存储和容错。出于任务管道承接的,考虑,当一些查询翻译到MapReduce任务时,往往会产生多个Stage,而这些串联的Stage又依赖于底层文件系统(如HDFS)来存储每一个Stage的输出结果Spark是MapReduce的替代方案,而且兼容HDFS、Hive,可融入Hadoop的生态系统,以弥补MapReduce的不足。

3. Spark特点

3.1. 快

与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。
这里写图片描述

3.2. 易用

Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。
这里写图片描述

3.3. 通用

Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。

3.4. 兼容性

Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。
这里写图片描述

### Apache Spark 概述 Apache Spark 是一种快速且通用的分布式计算框架,专为大规模数据处理而设计。它提供了多种编程语言的支持,包括 Java、Scala、Python 和 R,并通过其优化引擎实现了高效的并行操作[^3]。 Spark 不仅能够运行在 Hadoop YARN 上,还可以独立部署或者其他资源管理器集成。它的核心优势在于内存计算能力,这使得它可以显著提高迭代算法和交互查询的速度。此外,Spark 还支持批处理、实时流处理以及复杂的分析任务。 --- ### 主要功能 #### 1. **统一的数据处理接口** - Spark 提供了一个名为 `SparkSession` 的统一入口点,在版本 2.0 中引入,简化了开发者的工作流程。这个单一的 API 集成了之前多个上下文的功能(如 `SparkContext`, `SQLContext`, `HiveContext`),从而减少了复杂性和冗余代码[^1]。 #### 2. **强大的生态系统** - Spark 生态系统由多个模块组成,涵盖了各种数据分析需求: - **Spark Core**: 基础部分,负责调度、任务分发和基本 I/O 功能。 - **Spark SQL**: 支持结构化数据处理和标准 SQL 查询。 - **DataFrame/Dataset**: 类似于关系型数据库表的对象模型,便于高效的操作。 - **Spark Streaming**: 实现低延迟的流式数据处理。 - **Structured Streaming**: 构建可扩展且容错的流应用。 - **MLlib**: 提供机器学习库,包含常用算法实现。 - **GraphX**: 图形处理工具包,适用于社交网络分析等领域。 - **SparkR**: 将 Spark 的强大性能带入 R 社区[^2]。 #### 3. **高性能** - 利用基于内存的计算方式,Spark 能够比传统的磁盘读写方法更快完成大量重复访问的任务。这种特性对于需要多次扫描相同数据集的应用程序尤为重要。 #### 4. **易用性灵活性** - 开发者可以通过简单的 API 编写复杂的逻辑;同时由于兼容 Hadoop 数据源,迁移成本较低。另外,借助 Maven 或 SBT 添加必要的依赖项即可轻松构建项目环境[^4]。 ```scala // 示例:向 build.sbt 文件添加 Spark 依赖 libraryDependencies += "org.apache.spark" %% "spark-core" % "2.4.0" libraryDependencies += "org.apache.spark" %% "spark-mllib" % "2.4.0" ``` --- ### 总结 综上所述,Apache Spark 凭借其灵活的设计理念、广泛的适用范围以及不断完善的社区支持,已经成为现代大数据领域不可或缺的技术之一。无论是批量作业还是在线服务场景下,都能看到它的身影。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

涂作权的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值