涂作权的博客

成功就是将个人潜能发挥到极限!&&以大多数人的努力程度之低,根本还轮不到拼天赋!...

阿里redis规范(转自别人的公众号)

一、键值设计

1. key名设计
 (1)【建议】: 可读性和可管理性
以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id
ugc:video:1
 (2)【建议】:简洁性
保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:
user:{uid}:friends:messages:{mid}简化为u:{uid}:fr:m:{mid}。
 (3)【强制】:不要包含特殊字符
反例:包含空格、换行、单双引号以及其他转义字符
2. value设计
 (1)【强制】:拒绝bigkey(防止网卡流量、慢查询)
string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。
反例:一个包含200万个元素的list。
非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞,而且该操作不会不出现在慢查询中(latency可查)),查找方法和删除方法
 (2)【推荐】:选择适合的数据类型。
例如:实体类型(要合理控制和使用数据结构内存编码优化配置,例如ziplist,但也要注意节省内存和性能之间的平衡)
反例:
set user:1:name tomset user:1:age 19set user:1:favor football
正例:
hmset user:1 name tom age 19 favor football
3.【推荐】:控制key的生命周期,redis不是垃圾桶。
建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注idletime。

二、命令使用

1.【推荐】 O(N)命令关注N的数量
例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。
2.【推荐】:禁用命令
禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。
3.【推荐】合理使用select
redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。
4.【推荐】使用批量操作提高效率
原生命令:例如mget、mset。非原生命令:可以使用pipeline提高效率。
但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)。
注意两者不同:
1. 原生是原子操作,pipeline是非原子操作。2. pipeline可以打包不同的命令,原生做不到3. pipeline需要客户端和服务端同时支持。
5.【建议】Redis事务功能较弱,不建议过多使用
Redis的事务功能较弱(不支持回滚),而且集群版本(自研和官方)要求一次事务操作的key必须在一个slot上(可以使用hashtag功能解决)
6.【建议】Redis集群版本在使用Lua上有特殊要求:
 1.所有key都应该由 KEYS 数组来传递,redis.call/pcall 里面调用的redis命令,key的位置,必须是KEYS array, 否则直接返回error,”-ERR bad lua script for redis cluster, all the keys that the script uses should be passed using the KEYS arrayrn”
 2.所有key,必须在1个slot上,否则直接返回error, “-ERR eval/evalsha command keys must in same slotrn”
7.【建议】必要情况下使用monitor命令时,要注意不要长时间使用。

三、客户端使用

1.【推荐】
避免多个应用使用一个Redis实例
正例:不相干的业务拆分,公共数据做服务化。
2.【推荐】
使用带有连接池的数据库,可以有效控制连接,同时提高效率,标准使用方式:
这里写图片描述
下面是JedisPool优化方法的文章:
 Jedis常见异常汇总
 JedisPool资源池优化
3.【建议】
高并发下建议客户端添加熔断功能(例如netflix hystrix)
4.【推荐】
设置合理的密码,如有必要可以使用SSL加密访问(阿里云Redis支持)
5.【建议】
根据自身业务类型,选好maxmemory-policy(最大内存淘汰策略),设置好过期时间。
默认策略是volatile-lru,即超过最大内存后,在过期键中使用lru算法进行key的剔除,保证不过期数据不被删除,但是可能会出现OOM问题。
其他策略如下:
 allkeys-lru:根据LRU算法删除键,不管数据有没有设置超时属性,直到腾出足够空间为止。
 allkeys-random:随机删除所有键,直到腾出足够空间为止。
 volatile-random:随机删除过期键,直到腾出足够空间为止。
 volatile-ttl:根据键值对象的ttl属性,删除最近将要过期数据。如果没有,回退到noeviction策略。
 noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息”(error) OOM command not allowed when used memory”,此时Redis只响应读操作。

四、相关工具

1.【推荐】:数据同步
redis间数据同步可以使用:redis-port
2.【推荐】:big key搜索
redis大key搜索工具
3.【推荐】:热点key寻找(内部实现使用monitor,所以建议短时间使用)
facebook的redis-faina
阿里云Redis已经在内核层面解决热点key问题,欢迎使用。

五 附录:删除bigkey

  1. 下面操作可以使用pipeline加速。2. redis 4.0已经支持key的异步删除,欢迎使用。
    1. Hash删除: hscan + hdel
    这里写图片描述
    2. List删除: ltrim
    这里写图片描述
    3. Set删除: sscan + srem
    这里写图片描述
    4. SortedSet删除: zscan + zrem
    这里写图片描述
阅读更多
想对作者说点什么? 我来说一句

Java规范_阿里-201703

2017年11月13日 1.08MB 下载

没有更多推荐了,返回首页

不良信息举报

阿里redis规范(转自别人的公众号)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭