首先来考虑前面每个数在m次变换后对后面的某一个数的异或次数,因为偶次异或相当于没有异或,奇次相当于异或一次。我们来考虑一下第一个数对后面的贡献次数
第一次 1 0 0 0 0
第二次 1 1 1 1 1
第三次 1 2 3 4 5
第四次 1 3 6 10 15
斜着看其实就是一个杨辉三角。
那么对于每一个次数就是C(x+y-2,x-1),然后就是判断这个值的奇偶就可以了,可以去百度一发怎么判断,这里直接给结论了:设m=x+y-2 n=x-1。如果m&n==m 那么就是奇数。
然后还可以判断一些的就是 其实如果第一个数对第i个数贡献是奇数,那么第二个数对第i+1个数的贡献也是奇数。
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<string>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cstring>
#define clr(x) memset(x,0,sizeof(x))
using namespace std;
#define LL long long
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
int dat[200005];
for(int i = 1;i<=n;i++)
{
scanf("%d",&dat[i]);
}
int b[200005] = {0};
for(int i = 1;i<=n;i++)
{
int u = i-1;
int d = i+m-2;
if((d&u)==u) // 为奇
{
for(int j = i;j<=n;j++)
{
b[j] ^= dat[j-i+1];
}
}
}
for(int i = 1;i<=n;i++)
{
if(i!=1)
{
printf(" ");
}
printf("%d",b[i]);
}
printf("\n");
}
return 0;
}